Department of Radiation Oncology, Columbia University, New York, New York 10032, USA.
Med Phys. 2010 Feb;37(2):861-8. doi: 10.1118/1.3298017.
The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4 x 4 cm2 photon fields or 6 x 6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6 x 6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752 +/- 3%, 0.0756 +/- 3%, 0.0767 +/- 3%, and 0.0759 +/- 3% cm(-1) Gy(-1)) and the PDD matching methods (0.0768 +/- 3% and 0.0761 +/- 3% cm(-1) Gy(-1)) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6 x 6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.
使用 OCTOPUS 激光 CT 扫描仪(MGS Research Inc.,Madison,CT)研究了 BANG 3 聚合物凝胶剂量计(MGS Research Inc.,Madison,CT)的剂量响应。六个 17 厘米直径和 12 厘米高的 Barex 圆柱体和 18 个小玻璃小瓶用于容纳凝胶。使用瓦里安 Clinac 2100EX,用 6 和 10 MV 光子以及 12 和 16 MeV 电子对凝胶模型进行了照射。使用三种校准方法获得剂量响应曲线:(a)使用 6 或 10 MV 大野照射对 18 个玻璃小瓶进行分级剂量(0 至 4 Gy)的光密度测量;(b)用四个相邻的 4×4 cm2 光子场或 6×6 cm2 电子场照射分级剂量(0.5、1、1.5 和 2 Gy)的 Barex 圆柱体的光学-CT 扫描;(c)6×6 cm2、12 和 16 MeV 电子场的光学-CT 扫描与电离室测量的百分深度剂量(PDD)比较。在实验方法的不确定度内(约 3%),发现 BANG3 凝胶的剂量响应呈线性且与能量无关。四个场照射(0.0752±3%、0.0756±3%、0.0767±3%和 0.0759±3%cm-1Gy-1)和 PDD 匹配方法(0.0768±3%和 0.0761±3%cm-1Gy-1)的线性拟合剂量响应曲线的斜率之间的差异在 2.2%以内,表明相同几何形状的体模中凝胶剂量响应具有良好的可重复性。玻璃小瓶方法的剂量灵敏度与圆柱形 Barex 体模的剂量灵敏度相差超过 30%,这可能是由于两种类型的体模在凝胶形成和照射过程中内部温度的差异以及玻璃小瓶壁可能存在的氧气污染所致。使用 16 MeV 电子场的 PDD 匹配方法获得的剂量响应曲线用于校准用 12 MeV、6×6 cm2 电子场照射的凝胶体模。使用 3%剂量差异和 2mm 距离一致性标准比较并评估了来自凝胶测量和 Eclipse 规划系统(Varian Corporation,Palo Alto,CA)的三维剂量分布。