Leenen Frans H H
University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
Biochim Biophys Acta. 2010 Dec;1802(12):1132-9. doi: 10.1016/j.bbadis.2010.03.004. Epub 2010 Mar 15.
Na(+)-transport regulating mechanisms classically considered to reflect renal control of sodium homeostasis and BP, i.e. aldosterone-mineralocorticoid receptors (MR)-epithelial sodium channels (ENaC)-Na(+)/K(+)-ATPase have now been demonstrated to also be present in the central nervous system. This pathway is being regulated independently of the peripheral/renal pathway and contributes to regulation of cerebrospinal fluid [Na(+)] by the choroid plexus, of brain tissue [Na(+)] by the ependyma and to neuronal responses to e.g. Na(+) or angiotensin II. Increases in CSF [Na(+)] by central infusion of Na(+)-rich aCSF or by high salt intake in Dahl S or SHR cause sympatho-excitation and hypertension. These responses appear to depend on activation of a CNS cascade starting with aldosterone-MR-ENaC-"ouabain," the latter lowering neuronal membrane potential leading to enhanced angiotensin II release in e.g. the PVN. Specific CNS blockade of any of the steps in this cascade from aldosterone synthase blockade to AT(1)-receptor blockade prevents the sympathetic hyperactivity and hypertension on high salt intake, irrespective of the presence of a "salt-sensitive kidney." We propose that in salt-sensitive hypertension an increase in CSF [Na(+)] causes a local increase in aldosterone biosynthesis which activates an aldosterone dependent neuromodulatory pathway which enhances activity of angiotensinergic sympatho-excitatory pathways leading to hypertension.
传统上认为反映肾脏对钠稳态和血压控制的钠转运调节机制,即醛固酮 - 盐皮质激素受体(MR) - 上皮钠通道(ENaC) - 钠/钾 - ATP酶,现已证明也存在于中枢神经系统中。该途径独立于外周/肾脏途径进行调节,并有助于脉络丛对脑脊液[Na⁺]、室管膜对脑组织[Na⁺]的调节,以及神经元对例如Na⁺或血管紧张素II的反应。通过向中枢输注富含Na⁺的人工脑脊液或在 Dahl S 或 SHR 中高盐摄入使脑脊液[Na⁺]升高会引起交感神经兴奋和高血压。这些反应似乎依赖于从醛固酮 - MR - ENaC - “哇巴因”开始的中枢神经系统级联反应的激活,后者降低神经元膜电位,导致例如室旁核中血管紧张素II释放增加。从醛固酮合酶阻断到AT₁受体阻断,对该级联反应中任何步骤的特异性中枢神经系统阻断均可预防高盐摄入时的交感神经过度活动和高血压,而与“盐敏感肾”的存在无关。我们提出,在盐敏感性高血压中,脑脊液[Na⁺]升高会导致醛固酮生物合成局部增加,从而激活醛固酮依赖性神经调节途径,增强血管紧张素能交感兴奋途径的活性,导致高血压。