Suppr超能文献

临床试验资格的自动化匹配软件:衡量效率和灵活性。

Automated matching software for clinical trials eligibility: measuring efficiency and flexibility.

机构信息

Dept of Internal Medicine, School of Medicine, Virginia Commonwealth University, Massey Cancer Center, United States.

出版信息

Contemp Clin Trials. 2010 May;31(3):207-17. doi: 10.1016/j.cct.2010.03.005. Epub 2010 Mar 15.

Abstract

BACKGROUND

Clinical trials (CT) serve as the media that translates clinical research into standards of care. Low or slow recruitment leads to delays in delivery of new therapies to the public. Determination of eligibility in all patients is one of the most important factors to assure unbiased results from the clinical trials process and represents the first step in addressing the issue of under representation and equal access to clinical trials.

METHODS

This is a pilot project evaluating the efficiency, flexibility, and generalizibility of an automated clinical trials eligibility screening tool across 5 different clinical trials and clinical trial scenarios.

RESULTS

There was a substantial total savings during the study period in research staff time spent in evaluating patients for eligibility ranging from 165h to 1329h. There was a marked enhancement in efficiency with the automated system for all but one study in the pilot. The ratio of mean staff time required per eligible patient identified ranged from 0.8 to 19.4 for the manual versus the automated process.

CONCLUSION

The results of this study demonstrate that automation offers an opportunity to reduce the burden of the manual processes required for CT eligibility screening and to assure that all patients have an opportunity to be evaluated for participation in clinical trials as appropriate. The automated process greatly reduces the time spent on eligibility screening compared with the traditional manual process by effectively transferring the load of the eligibility assessment process to the computer.

摘要

背景

临床试验(CT)是将临床研究转化为临床实践标准的媒介。低或慢招募会导致新疗法延迟向公众提供。在所有患者中确定资格是确保临床试验过程中获得无偏结果的最重要因素之一,也是解决代表性不足和公平获得临床试验机会问题的第一步。

方法

这是一个试点项目,评估了一种自动化临床试验资格筛选工具在 5 种不同临床试验和临床试验场景中的效率、灵活性和可推广性。

结果

在研究期间,研究人员评估患者资格的时间在 165 小时至 1329 小时之间有了大量节省。除了一个试点研究外,自动化系统在所有研究中都显著提高了效率。手动与自动化流程相比,每识别出一个合格患者所需的平均员工时间比为 0.8 至 19.4。

结论

这项研究的结果表明,自动化为减轻 CT 资格筛选所需的手动流程负担并确保所有患者都有机会根据需要评估参与临床试验提供了机会。与传统的手动流程相比,自动化流程通过有效地将资格评估过程的负担转移到计算机上,大大减少了资格筛选所花费的时间。

相似文献

1
Automated matching software for clinical trials eligibility: measuring efficiency and flexibility.
Contemp Clin Trials. 2010 May;31(3):207-17. doi: 10.1016/j.cct.2010.03.005. Epub 2010 Mar 15.
4
Computer-based screening of patients with HIV/AIDS for clinical-trial eligibility.
Online J Curr Clin Trials. 1995 Mar 28;Doc No 179:[3347 words; 32 paragraphs].
6
Effort required in eligibility screening for clinical trials.
J Oncol Pract. 2012 Nov;8(6):365-70. doi: 10.1200/JOP.2012.000646. Epub 2012 Sep 11.
8
ClinicalTrials.gov as a data source for semi-automated point-of-care trial eligibility screening.
PLoS One. 2014 Oct 21;9(10):e111055. doi: 10.1371/journal.pone.0111055. eCollection 2014.
9
American Society of Clinical Oncology policy statement: oversight of clinical research.
J Clin Oncol. 2003 Jun 15;21(12):2377-86. doi: 10.1200/JCO.2003.04.026. Epub 2003 Apr 29.
10
Evaluation of eligibility and recruitment in breast cancer clinical trials.
Breast. 2014 Aug;23(4):385-92. doi: 10.1016/j.breast.2014.02.002. Epub 2014 Mar 26.

引用本文的文献

1
Advances in nanotechnology-enabled adjuvants for peptide-based cancer vaccines.
Nano Res. 2025 Jul;18(7). doi: 10.26599/nr.2025.94907534. Epub 2025 May 22.
4
Distilling large language models for matching patients to clinical trials.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1953-1963. doi: 10.1093/jamia/ocae073.
6
Implementation of inclusion and exclusion criteria in clinical studies in OHDSI ATLAS software.
Sci Rep. 2023 Dec 18;13(1):22457. doi: 10.1038/s41598-023-49560-w.
7
9
The future of automated infection detection: Innovation to transform practice (Part III/III).
Antimicrob Steward Healthc Epidemiol. 2023 Feb 10;3(1):e26. doi: 10.1017/ash.2022.333. eCollection 2023.
10
A SuperLearner Approach to Predict Run-In Selection in Clinical Trials.
Comput Math Methods Med. 2022 Sep 10;2022:4306413. doi: 10.1155/2022/4306413. eCollection 2022.

本文引用的文献

1
Use of electronic health records in U.S. hospitals.
N Engl J Med. 2009 Apr 16;360(16):1628-38. doi: 10.1056/NEJMsa0900592. Epub 2009 Mar 25.
6
Influence of clinical communication on patients' decision making on participation in clinical trials.
J Clin Oncol. 2008 Jun 1;26(16):2666-73. doi: 10.1200/JCO.2007.14.8114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验