Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB21PZ, United Kingdom.
Ultrasonics. 2010 Jun;50(7):716-25. doi: 10.1016/j.ultras.2010.02.008. Epub 2010 Feb 17.
The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of -9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method.
在医学脉冲回波超声成像系统中,软组织中的声速通常假定为 1540m/s。当实际声速不同时,这种不匹配会导致采集图像的失真,从而降低其临床价值。我们之前曾报道过一种新的声速估计方法,用于图像反卷积。与大多数其他声速估计方法不同,这种方法可以使用未经修改的超声机和正常的扫描模式。我们的方法已经在具有单一声速的大体均匀介质中得到了验证。在本文中,我们证明通过图像反卷积也可以估计双层介质的声速。针对具有双层结构的介质,已经开发了一种超声模拟器,假设在中等速度差异下,界面处的反射可以忽略不计。我们已经将我们的双层算法应用于模拟和离体仿体中。通过我们前面提到的用于均匀介质的方法来估计顶层的速度。然后,当知道层边界位置时,使用具有不同下层速度的双层点扩散函数进行一系列反卷积。使用相关度量来选择最佳恢复。在离体仿体中的误差水平(例如,平均误差为-9m/s,标准差为 16m/s)不如我们的单速算法好,但与其他局部声速估计方法相当,在这些方法中,数据采集可能不如我们提出的方法简单。