Suppr超能文献

基于学习的线性阵列光声成像声速估计与像差校正

Learning-based sound speed estimation and aberration correction for linear-array photoacoustic imaging.

作者信息

Shi Mengjie, Vercauteren Tom, Xia Wenfeng

机构信息

School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, United Kingdom.

出版信息

Photoacoustics. 2024 May 28;38:100621. doi: 10.1016/j.pacs.2024.100621. eCollection 2024 Aug.

Abstract

Photoacoustic (PA) image reconstruction involves acoustic inversion that necessitates the specification of the speed of sound (SoS) within the medium of propagation. Due to the lack of information on the spatial distribution of the SoS within heterogeneous soft tissue, a homogeneous SoS distribution (such as 1540 m/s) is typically assumed in PA image reconstruction, similar to that of ultrasound (US) imaging. Failure to compensate for the SoS variations leads to aberration artefacts, deteriorating the image quality. Various methods have been proposed to address this issue, but they usually involve complex hardware and/or time-consuming algorithms, hindering clinical translation. In this work, we introduce a deep learning framework for SoS estimation and subsequent aberration correction in a dual-modal PA/US imaging system exploiting a clinical US probe. As the acquired PA and US images were inherently co-registered, the estimated SoS distribution from US channel data using a deep neural network was incorporated for accurate PA image reconstruction. The framework comprised an initial pre-training stage based on digital phantoms, which was further enhanced through transfer learning using physical phantom data and associated SoS maps obtained from measurements. This framework achieved a root mean square error of 10.2 m/s and 15.2 m/s for SoS estimation on digital and physical phantoms, respectively and structural similarity index measures of up to 0.88 for PA reconstructions compared to the conventional approach of 0.69. A maximum of 1.2 times improvement in the signal-to-noise ratio of PA images was further demonstrated with a human volunteer study. Our results show that the proposed framework could be valuable in various clinical and preclinical applications to enhance PA image reconstruction.

摘要

光声(PA)图像重建涉及声学反演,这需要确定传播介质中的声速(SoS)。由于缺乏关于异质软组织中SoS空间分布的信息,在PA图像重建中通常假定为均匀的SoS分布(例如1540米/秒),这与超声(US)成像类似。未能补偿SoS变化会导致像差伪影,降低图像质量。已经提出了各种方法来解决这个问题,但它们通常涉及复杂的硬件和/或耗时的算法,阻碍了临床转化。在这项工作中,我们引入了一个深度学习框架,用于在利用临床US探头的双模态PA/US成像系统中进行SoS估计和随后的像差校正。由于采集到的PA和US图像本质上是配准的,因此利用深度神经网络从US通道数据估计的SoS分布被纳入以进行准确的PA图像重建。该框架包括基于数字体模的初始预训练阶段,通过使用物理体模数据和从测量中获得的相关SoS图进行迁移学习进一步增强。该框架在数字和物理体模上进行SoS估计时分别实现了10.2米/秒和15.2米/秒的均方根误差,与传统方法的0.69相比,PA重建的结构相似性指数高达0.88。在人体志愿者研究中进一步证明,PA图像的信噪比最多提高了1.2倍。我们的结果表明,所提出的框架在各种临床和临床前应用中对于增强PA图像重建可能具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f03/11637060/a32a0741c761/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验