Division of Nephrology, University of Western Ontario, London, Canada.
Am J Kidney Dis. 2010 Jul;56(1):14-22. doi: 10.1053/j.ajkd.2009.11.026. Epub 2010 Mar 15.
BACKGROUND: EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. STUDY DESIGN: We used a diagnostic test assessment framework because filters operate similarly to screening tests. SETTINGS & PARTICIPANTS: We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. INDEX TEST: Information retrieval properties were assessed by treating each search filter as a "diagnostic test" or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. REFERENCE STANDARD & OUTCOME: The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. RESULTS: The best renal filters consisted of multiple search terms, such as "renal replacement therapy," "renal," "kidney disease," and "proteinuria," and the truncated terms "kidney," "dialy," "neph," "glomerul," and "hemodial." These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. LIMITATIONS: The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. CONCLUSIONS: We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.
背景:EMBASE 是一个常用于检索生物医学信息的数据库。我们的目标是开发和测试搜索过滤器,以帮助临床医生和研究人员在 EMBASE 中高效检索包含肾脏信息的文章。
研究设计:我们使用了诊断测试评估框架,因为过滤器的作用类似于筛选测试。
设置和参与者:我们将来自 39 种期刊的 5302 篇文章样本分为开发和验证集文章。
指标测试:通过将每个搜索过滤器视为“诊断测试”或筛选程序来评估信息检索特性,用于检测相关文章。我们测试了由独特的肾脏术语及其组合组成的 1936799 个搜索过滤器的性能。
参考标准和结果:参考标准是对每篇文章的人工审查。我们计算了每个过滤器识别包含肾脏信息的文章的灵敏度和特异性。
结果:最佳的肾脏过滤器由多个搜索术语组成,例如“肾脏替代疗法”、“肾脏”、“肾脏病”和“蛋白尿”,以及截断术语“kidney”、“dialy”、“neph”、“glomerul”和“hemodial”。这些过滤器的灵敏度最高达到 98.7%(95%CI,97.9-99.6),特异性为 98.5%(95%CI,98.0-99.0)。在独立文章的验证集中,这些过滤器的检索性能仍然非常出色。
局限性:任何搜索的检索性能都将取决于使用的所有搜索概念的质量,而不仅仅是肾脏术语。
结论:我们经验性地为 EMBASE 开发和验证了高性能的肾脏搜索过滤器。这些过滤器可以编程到搜索引擎中,也可以单独使用,以提高搜索效率。
Am J Kidney Dis. 2010-3-15
Int J Technol Assess Health Care. 2009-10
Health Informatics J. 2011-6
Nat Biotechnol. 2004-8
Am J Kidney Dis. 2014-7-22
Health Info Libr J. 2010-12
AJR Am J Roentgenol. 2007-6
Trends Biotechnol. 2003-3
Indian J Dermatol Venereol Leprol. 2011
Methods Inf Med. 2013
Syst Rev. 2012-2-29
J Am Med Inform Assoc. 2011-9-23