National Metrology Institute of Japan, AIST, 8-1-309, 2-Chome, Tomooka, Nagaokakyo 617-0843, Japan.
J Chem Phys. 2010 Mar 14;132(10):104504. doi: 10.1063/1.3353926.
The viscosity-temperature relationship obtained by us for several glasses over a wide temperature range was analyzed by extending the Adam-Gibbs theory to the range below the glass transition temperature (T(g)). The entropy change of the intermediate-range orders (IROs) is discussed on the basis of the theory developed by Prigogine. It is estimated that the time dependence of the vibrational entropy of a glass shows a constant decrease with a smallest change, while that of its configurational entropy is 0, keeping the constant fictive temperature and the isostructural state. The result predicts the decrease of the volume of a glass at the constant time-rate through spontaneous aging at the constant temperature. We also show that the glass transition is a phase transition from an equilibrium Vogel-Fulcher-Tamman state to a nonequilibrium and (meta-)stable Arrhenius state through fluctuations at T(g), and a microscopic feature of the glass transition is the self-organization of the IROs. These findings are extremely useful in analyzing glass and nanomaterial productions because the size of the IROs in the glass state is a few nanometers.
我们通过将 Adam-Gibbs 理论扩展到玻璃化转变温度 (Tg) 以下的范围,分析了在较宽温度范围内获得的几种玻璃的粘度-温度关系。基于普里戈金发展的理论,我们讨论了中间范围有序(IRO)的熵变化。据估计,玻璃振动熵的时间依赖性表现出恒定的减小,具有最小的变化,而其构象熵为 0,保持恒定的虚拟温度和同构状态。该结果通过在恒定温度下自发老化预测了玻璃在恒定时间速率下的体积减小。我们还表明,玻璃转变是通过 Tg 处的涨落从平衡 Vogel-Fulcher-Tamman 状态到非平衡和(亚)稳定 Arrhenius 状态的相转变,玻璃转变的微观特征是 IRO 的自组织。这些发现对于分析玻璃和纳米材料的生产非常有用,因为玻璃态中 IRO 的大小为几纳米。