Fort Valley State University, Department of Mathematics and Computer Science, Fort Valley, GA 31030, USA.
IET Syst Biol. 2010 Mar;4(2):145-56. doi: 10.1049/iet-syb.2008.0175.
With the increased availability of DNA microarray time-series data, it is possible to discover dynamic gene regulatory networks (GRNs). S-system is a promising model to capture the rich dynamics of GRNs. However, owing to the complexity of the inference problem and limited number of available data comparing to the number of unknown kinetic parameters, S-system can only be applied to a very small GRN with few parameters. This significantly limits its applications. A unified approach to infer GRNs using the S-system model is proposed. In order to discover the structure of large-scale GRNs, a simplified S-system model is proposed that enables fast parameter estimation to determine the major gene interactions. If a detailed S-system model is desirable for a subset of genes, a two-step method is proposed where the range of the parameters will be determined first using genetic programming and recursive least square estimation. Then the mean values of the parameters will be estimated using a multi-dimensional optimisation algorithm. Both the downhill simplex algorithm and modified Powell algorithm are tested for multi-dimensional optimisation. A 50-dimensional synthetic model with 51 parameters for each gene is tested for the applicability of the simplified S-system model. In addition, real measurement data pertaining to yeast protein synthesis are used to demonstrate the effectiveness of the proposed two-step method to identify the detailed interactions among genes in small GRNs.
随着 DNA 微阵列时间序列数据的可用性增加,发现动态基因调控网络 (GRN) 成为可能。S 系统是捕获 GRN 丰富动态的有前途的模型。然而,由于推断问题的复杂性和可用数据的数量相对于未知动力学参数的数量有限,S 系统只能应用于具有少数参数的非常小的 GRN。这极大地限制了它的应用。提出了一种使用 S 系统模型推断 GRN 的统一方法。为了发现大规模 GRN 的结构,提出了简化的 S 系统模型,该模型能够快速进行参数估计,以确定主要基因相互作用。如果希望对一组基因使用详细的 S 系统模型,则可以采用两步法,首先使用遗传编程和递归最小二乘估计确定参数的范围。然后使用多维优化算法估计参数的平均值。测试了 downhill simplex 算法和 modified Powell 算法进行多维优化。测试了具有 51 个参数的 50 维合成模型,以验证简化 S 系统模型的适用性。此外,还使用酵母蛋白质合成的实际测量数据来证明所提出的两步法在识别小 GRN 中基因之间详细相互作用的有效性。