Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, NY, USA.
BMC Med Genomics. 2010 Mar 16;3:8. doi: 10.1186/1755-8794-3-8.
BACKGROUND: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. METHODS: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. RESULTS: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. CONCLUSIONS: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.
背景:目前的前列腺癌预后模型基于治疗前前列腺特异性抗原(PSA)水平、活检 Gleason 评分和临床分期,但实际上不足以准确预测疾病进展。因此,我们试图通过推理建立一个用于前列腺癌进展的分子面板,认为分子谱可能进一步改进当前的临床模型。
方法:我们使用一种新的基因表达谱分析方法分析了一个具有长达 30 年临床随访的瑞典观察等待队列。这种 cDNA 介导的退火、选择、连接和扩展(DASL)方法能够使用在初始诊断时进行的经尿道前列腺切除术(TURP)的福尔马林固定石蜡包埋样本。我们确定了 281 名男性的 6100 个基因的表达谱,这些男性分为两个极端组:死于前列腺癌的男性和存活超过 10 年没有转移的男性(分别为致死性和惰性)。使用临床和分子特征的几种统计和机器学习模型评估了它们区分致死性和惰性病例的能力。
结果:令人惊讶的是,使用分子谱的预测模型都没有比仅使用临床变量的模型有显著改善。额外的计算分析证实,与其他类型的肿瘤相比,前列腺癌中致死性和惰性两类的分子异质性广泛存在。
结论:在初始诊断时确定分子主导性肿瘤结节可能受到限制,可能在初始诊断时不存在,也可能随着疾病的进展而出现,使得前列腺癌进展的分子生物标志物的开发具有挑战性。
BMC Med Genomics. 2010-3-16
Asian J Androl. 2016
Int J Cancer. 2012-12-21
Cancer Epidemiol Biomarkers Prev. 2008-1
J Clin Invest. 2025-6-16
Mod Pathol. 2009-7
N Engl J Med. 2009-3-26
N Engl J Med. 2009-3-26
N Engl J Med. 2008-11-6