文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

前列腺癌的分子采样:预测疾病进展的困境。

Molecular sampling of prostate cancer: a dilemma for predicting disease progression.

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, NY, USA.

出版信息

BMC Med Genomics. 2010 Mar 16;3:8. doi: 10.1186/1755-8794-3-8.


DOI:10.1186/1755-8794-3-8
PMID:20233430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2855514/
Abstract

BACKGROUND: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. METHODS: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. RESULTS: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. CONCLUSIONS: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.

摘要

背景:目前的前列腺癌预后模型基于治疗前前列腺特异性抗原(PSA)水平、活检 Gleason 评分和临床分期,但实际上不足以准确预测疾病进展。因此,我们试图通过推理建立一个用于前列腺癌进展的分子面板,认为分子谱可能进一步改进当前的临床模型。

方法:我们使用一种新的基因表达谱分析方法分析了一个具有长达 30 年临床随访的瑞典观察等待队列。这种 cDNA 介导的退火、选择、连接和扩展(DASL)方法能够使用在初始诊断时进行的经尿道前列腺切除术(TURP)的福尔马林固定石蜡包埋样本。我们确定了 281 名男性的 6100 个基因的表达谱,这些男性分为两个极端组:死于前列腺癌的男性和存活超过 10 年没有转移的男性(分别为致死性和惰性)。使用临床和分子特征的几种统计和机器学习模型评估了它们区分致死性和惰性病例的能力。

结果:令人惊讶的是,使用分子谱的预测模型都没有比仅使用临床变量的模型有显著改善。额外的计算分析证实,与其他类型的肿瘤相比,前列腺癌中致死性和惰性两类的分子异质性广泛存在。

结论:在初始诊断时确定分子主导性肿瘤结节可能受到限制,可能在初始诊断时不存在,也可能随着疾病的进展而出现,使得前列腺癌进展的分子生物标志物的开发具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/42ac47b8db06/1755-8794-3-8-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/86bf87db1371/1755-8794-3-8-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/c9a380d95dd1/1755-8794-3-8-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/425d161e1ad2/1755-8794-3-8-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/42ac47b8db06/1755-8794-3-8-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/86bf87db1371/1755-8794-3-8-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/c9a380d95dd1/1755-8794-3-8-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/425d161e1ad2/1755-8794-3-8-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/2855514/42ac47b8db06/1755-8794-3-8-4.jpg

相似文献

[1]
Molecular sampling of prostate cancer: a dilemma for predicting disease progression.

BMC Med Genomics. 2010-3-16

[2]
Prostate stem cell antigen mRNA expression in preoperatively negative biopsy specimens predicts subsequent cancer after transurethral resection of the prostate for benign prostatic hyperplasia.

Prostate. 2009-9-1

[3]
Prognostic value of DNA ploidy, bcl-2 and p53 in localized prostate adenocarcinoma incidentally discovered at transurethral prostatectomy.

J Urol. 2006-12

[4]
A 12-gene expression signature is associated with aggressive histological in prostate cancer: SEC14L1 and TCEB1 genes are potential markers of progression.

Am J Pathol. 2012-11

[5]
External beam radiotherapy (EBRT) suppressed prostate stem cell antigen (PSCA) mRNA expression in clinically localized prostate cancer.

Prostate. 2007-5-1

[6]
Molecular profiling of indolent human prostate cancer: tackling technical challenges to achieve high-fidelity genome-wide data.

Asian J Androl. 2012-2-6

[7]
A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy.

Eur Urol. 2014-11-12

[8]
Clinical variability and molecular heterogeneity in prostate cancer.

Asian J Androl. 2016

[9]
miQ--a novel microRNA based diagnostic and prognostic tool for prostate cancer.

Int J Cancer. 2012-12-21

[10]
Nine-gene molecular signature is not associated with prostate cancer death in a watchful waiting cohort.

Cancer Epidemiol Biomarkers Prev. 2008-1

引用本文的文献

[1]
RSK1-driven TRIM28/E2F1 feedback loop promotes castration-resistant prostate cancer progression.

J Clin Invest. 2025-6-16

[2]
A TBX2-driven signaling switch from androgen receptor to glucocorticoid receptor confers therapeutic resistance in prostate cancer.

Oncogene. 2025-4

[3]
Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression.

Int J Mol Sci. 2024-10-22

[4]
Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven 7-Gene Stemness Signature that Predicts Progression.

medRxiv. 2024-9-25

[5]
NOTCH3 as a prognostic biomarker and its correlation with immune infiltration in gastrointestinal cancers.

Sci Rep. 2024-6-21

[6]
CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression.

Nat Commun. 2024-3-7

[7]
The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy.

Commun Biol. 2023-9-8

[8]
Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth.

Oncogene. 2023-8

[9]
Neurokinin-1 receptor drives PKCɑ-AURKA/N-Myc signaling to facilitate the neuroendocrine progression of prostate cancer.

Cell Death Dis. 2023-6-29

[10]
Macrophages promote anti-androgen resistance in prostate cancer bone disease.

J Exp Med. 2023-4-3

本文引用的文献

[1]
Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States.

Clin Cancer Res. 2009-7-15

[2]
Prostate cancer of transition zone origin lacks TMPRSS2-ERG gene fusion.

Mod Pathol. 2009-7

[3]
Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer.

Cancer Res. 2009-4-1

[4]
Screening and prostate-cancer mortality in a randomized European study.

N Engl J Med. 2009-3-26

[5]
Mortality results from a randomized prostate-cancer screening trial.

N Engl J Med. 2009-3-26

[6]
Gene expression in fixed tissues and outcome in hepatocellular carcinoma.

N Engl J Med. 2008-11-6

[7]
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy.

PLoS One. 2008

[8]
Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy.

J Clin Oncol. 2008-8-20

[9]
Interobserver variability between expert urologic pathologists for extraprostatic extension and surgical margin status in radical prostatectomy specimens.

Am J Surg Pathol. 2008-10

[10]
Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial.

J Natl Cancer Inst. 2008-8-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索