Suppr超能文献

酵母氮同化过程中通用氨基酸控制和雷帕霉素靶蛋白(TOR)调节途径的整合。

Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.

机构信息

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

出版信息

J Biol Chem. 2010 May 28;285(22):16893-911. doi: 10.1074/jbc.M110.121947. Epub 2010 Mar 16.

Abstract

Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.

摘要

两种重要的营养感应和调节途径,即一般氨基酸控制 (GAAC) 和雷帕霉素靶蛋白 (TOR),参与了酵母在营养供应变化时的生长和代谢控制。氨基酸饥饿通过 Gcn2p 磷酸化翻译因子 eIF2 和 GCN4 的优先翻译激活 GAAC,GCN4 是一种转录激活因子。TOR 感应氮的可用性,并调节 Gln3p 等转录因子。我们使用微阵列分析来解决 GAAC 和 TOR 途径在氨基酸饥饿和雷帕霉素处理期间指导酵母转录组的整合。我们发现 GAAC 是 TOR 途径的主要效应因子,在雷帕霉素处理期间,Gcn4p 和 Gln3p 各自诱导相似数量的基因。尽管 Gcn4p 激活了 57 个基因的共同核心,但 GAAC 在不同应激条件下指导转录组的显著变化。除了诱导氨基酸生物合成基因外,Gcn4p 与 Gln3p 一起激活了用于同化次要氮源(如γ-氨基丁酸 (GABA))的基因。当转向次要氮源时,Gcn2p 的激活被认为是通过双重机制发生的。首先,通过 Sit4p 蛋白磷酸酶涉及的机制,通过释放 TOR 抑制来诱导 Gcn2p。其次,这种 eIF2 激酶被选择的无电荷 tRNA 激活,这些 tRNA 在向 GABA 培养基转移时积累。这项研究强调了 GAAC 和 TOR 途径如何整合以识别不断变化的氮可用性并指导转录组以实现最佳生长适应的机制。

相似文献

1
Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.
J Biol Chem. 2010 May 28;285(22):16893-911. doi: 10.1074/jbc.M110.121947. Epub 2010 Mar 16.
2
The yeast eIF4E-associated protein Eap1p attenuates GCN4 translation upon TOR-inactivation.
FEBS Lett. 2005 Apr 25;579(11):2433-8. doi: 10.1016/j.febslet.2005.03.043.
3
Aminoacyl-tRNA quality control is required for efficient activation of the TOR pathway regulator Gln3p.
RNA Biol. 2018;15(4-5):594-603. doi: 10.1080/15476286.2017.1379635. Epub 2017 Oct 6.
6
Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae.
J Biol Chem. 2001 Jul 13;276(28):25661-71. doi: 10.1074/jbc.M101068200. Epub 2001 May 16.
7
Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p.
J Biol Chem. 2009 Sep 11;284(37):25254-67. doi: 10.1074/jbc.M109.000877. Epub 2009 Jun 22.
8
A role for TOR complex 2 signaling in promoting autophagy.
Autophagy. 2014;10(11):2085-6. doi: 10.4161/auto.36262.
9
Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase.
Mol Cell Biol. 2000 Apr;20(8):2706-17. doi: 10.1128/MCB.20.8.2706-2717.2000.

引用本文的文献

1
A dual reporter system for intracellular and extracellular amino acid sensing in budding yeast.
Mol Biol Cell. 2025 May 1;36(5):mr4. doi: 10.1091/mbc.E24-04-0162. Epub 2025 Apr 2.
2
Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression.
Mol Cell. 2024 Jun 6;84(11):2119-2134.e5. doi: 10.1016/j.molcel.2024.05.008.
3
Regulation of translation in response to iron deficiency in human cells.
Sci Rep. 2024 Apr 11;14(1):8451. doi: 10.1038/s41598-024-59003-9.
5
Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan.
PLoS One. 2023 Oct 13;18(10):e0292949. doi: 10.1371/journal.pone.0292949. eCollection 2023.
7
Global analysis of the yeast knockout phenome.
Sci Adv. 2023 May 26;9(21):eadg5702. doi: 10.1126/sciadv.adg5702.
9
Multiple Roles of the Stress Sensor GCN2 in Immune Cells.
Int J Mol Sci. 2023 Feb 21;24(5):4285. doi: 10.3390/ijms24054285.
10
The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1.
PLoS Genet. 2023 Feb 15;19(2):e1010641. doi: 10.1371/journal.pgen.1010641. eCollection 2023 Feb.

本文引用的文献

1
A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1.
Mol Cell Biol. 2010 Jan;30(2):481-95. doi: 10.1128/MCB.00688-09. Epub 2009 Nov 16.
2
Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p.
J Biol Chem. 2009 Sep 11;284(37):25254-67. doi: 10.1074/jbc.M109.000877. Epub 2009 Jun 22.
4
Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases.
J Biol Chem. 2008 Apr 11;283(15):9759-67. doi: 10.1074/jbc.M708779200. Epub 2008 Jan 7.
5
Translational control and the unfolded protein response.
Antioxid Redox Signal. 2007 Dec;9(12):2357-71. doi: 10.1089/ars.2007.1764.
6
Defining the role of mTOR in cancer.
Cancer Cell. 2007 Jul;12(1):9-22. doi: 10.1016/j.ccr.2007.05.008.
7
Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Apr;27(8):3065-86. doi: 10.1128/MCB.01084-06. Epub 2007 Feb 16.
8
Stress and mTORture signaling.
Oncogene. 2006 Oct 16;25(48):6373-83. doi: 10.1038/sj.onc.1209889.
9
Endoplasmic reticulum stress signaling in disease.
Physiol Rev. 2006 Oct;86(4):1133-49. doi: 10.1152/physrev.00015.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验