Suppr超能文献

谷氨酰胺分解代谢物阻遏敏感型的Gln3和Gat1定位调控需要一般氨基酸控制和14-3-3蛋白Bmh1/2。

General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.

作者信息

Tate Jennifer J, Buford David, Rai Rajendra, Cooper Terrance G

机构信息

Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.

Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163

出版信息

Genetics. 2017 Feb;205(2):633-655. doi: 10.1534/genetics.116.195800. Epub 2016 Dec 22.

Abstract

Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.

摘要

氮分解代谢物阻遏(NCR)是酿酒酵母优先利用优质氮源而非劣质氮源的能力,它源于GATA家族转录激活因子Gln3和Gat1的氮响应调控。在氮充足的条件下,GATA因子位于细胞质中,对NCR敏感的转录作用极小。当只有劣质氮源可用时,Gln3进入细胞核,显著增加GATA因子介导的转录。这种调控最初被认为是由机制性雷帕霉素靶蛋白激酶复合物1(mTorC1)介导对Gln3的控制。然而,我们最近发现有两个调控系统共同作用以维持Gln3在细胞质中的隔离,其中只有一个是mTorC1。目前的实验表明,另一个之前难以捉摸的成分是未负载的转移RNA激活的、Gcn2蛋白激酶介导的一般氨基酸控制(GAAC)。NCR敏感的细胞核Gln3-Myc定位需要Gcn2和Gcn4,并且从上位性实验来看,Gcn2似乎在Ure2的上游发挥作用。细胞核Gln3-Myc定位也需要Bmh1/2,并且它们似乎在Ure2的下游发挥作用。总体而言,Gcn2、Gcn4或Bmh1/2缺失时,Gln3的磷酸化水平会降低。我们的结果为氮响应性GATA因子调控增添了新的维度,并证明了mTorC1和GAAC途径的累积参与,这两条途径对氮的可用性反应相反,共同参与酵母中分解代谢基因表达的氮响应控制。

相似文献

3
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
5
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.
7
gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1.
J Biol Chem. 2013 Jan 25;288(4):2789-804. doi: 10.1074/jbc.M112.421826. Epub 2012 Dec 5.
8
Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.
J Biol Chem. 2014 Jan 31;289(5):2918-33. doi: 10.1074/jbc.M113.516740. Epub 2013 Dec 9.

引用本文的文献

1
Research progress on the function and regulatory pathways of amino acid permeases in fungi.
World J Microbiol Biotechnol. 2024 Nov 25;40(12):392. doi: 10.1007/s11274-024-04199-1.
2
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways.
Front Mol Biosci. 2024 Jan 24;11:1327014. doi: 10.3389/fmolb.2024.1327014. eCollection 2024.
3
A Gene from with Similarity to of Filamentous Ascomycetes Contributes to Regulating AreA.
J Fungi (Basel). 2023 Apr 26;9(5):516. doi: 10.3390/jof9050516.
5
Chromatin Regulators Ahc1p and Eaf3p Positively Influence Nitrogen Metabolism in .
Front Microbiol. 2022 May 10;13:883934. doi: 10.3389/fmicb.2022.883934. eCollection 2022.
7
Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of and .
Appl Environ Microbiol. 2021 Aug 11;87(17):e0048121. doi: 10.1128/AEM.00481-21.
10
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.

本文引用的文献

1
Target of rapamycin signaling mediates vacuolar fragmentation.
Curr Genet. 2017 Feb;63(1):35-42. doi: 10.1007/s00294-016-0616-0. Epub 2016 May 27.
2
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae.
Genetics. 2016 May;203(1):65-107. doi: 10.1534/genetics.115.186221.
4
Multiple amino acid sensing inputs to mTORC1.
Cell Res. 2016 Jan;26(1):7-20. doi: 10.1038/cr.2015.146. Epub 2015 Dec 11.
5
Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.
Mol Microbiol. 2016 Jan;99(2):360-79. doi: 10.1111/mmi.13236. Epub 2015 Nov 13.
6
Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.
Genetics. 2015 Nov;201(3):989-1016. doi: 10.1534/genetics.115.177725. Epub 2015 Sep 2.
8
Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo.
PLoS Genet. 2015 Feb 19;11(2):e1004991. doi: 10.1371/journal.pgen.1004991. eCollection 2015 Feb.
10
A domain in the transcription activator Gln3 specifically required for rapamycin responsiveness.
J Biol Chem. 2014 Jul 4;289(27):18999-9018. doi: 10.1074/jbc.M114.563668. Epub 2014 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验