Department of Biology and Biotechnology, Life Sciences and Bioengineering Center at Gateway Park, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605, USA.
Genetics. 2010 May;185(1):211-20. doi: 10.1534/genetics.109.112854. Epub 2010 Mar 16.
Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp.
许多与植物相关的微生物合成植物生长素吲哚-3-乙酸(IAA),并且已经在微生物和植物中鉴定出几种 IAA 生物合成途径。先前已经表明,酵母通过诱导假菌丝生长来响应 IAA。我们观察到 IAA 也诱导人类病原体白色念珠菌的菌丝生长,因此它可能作为一种次级代谢物信号,调节丝状过渡等毒力特征在致病真菌中。在玉米黑粉菌中,醛脱氢酶(Ald)是从色氨酸(Trp)前体合成 IAA 所必需的。在缺失两个 ALD 基因的酵母突变体中,无法将放射性标记的 Trp 转化为 IAA,但在没有外源 Trp 的情况下产生 IAA,并且水平高于野生型。这些数据表明,酵母可能有多种 IAA 合成途径,其中一种途径不依赖于 Trp。