RIKEN Plant Science Center, Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
Plant Cell Physiol. 2010 Apr;51(4):524-36. doi: 10.1093/pcp/pcq032. Epub 2010 Mar 16.
Despite its importance in plant growth and development, the auxin biosynthetic pathway has remained elusive. In this study, we analyzed hormone series transcriptome data from AtGenExpress in Arabidopsis and found that aminoethoxyvinylglycine (AVG) had the strongest anti-auxin activity. We also identified other effective compounds such as L-amino-oxyphenylpropionic acid (AOPP) through additional screening. These inhibitors shared characteristics in that they inhibited pyridoxal enzymes and/or aminotransferases. They reduced endogenous IAA levels in both monocots and dicots. L-AOPP inhibited root development of Arabidopsis in main root elongation, gravitropism, root skewing and root hair formation. This inhibition was generally recovered after exogenous IAA treatment, and the recovery was almost completely to the level of non-inhibited seedlings. The compounds inhibited conversion from tryptophan to indole-3-pyruvic acid in enzyme extracts from Arabidopsis and wheat. Our data collectively suggest that the inhibitors directly blocked auxin biosynthesis, and that the major target site was tryptophan aminotransferase. This enzyme probably makes up one of the major biosynthesis pathways conserved among higher plants. Each inhibitor, however, demonstrated a different action spectrum in shoot and root of rice and tomato, indicating diversity in biosynthesis pathways between organs and species. Our results provide novel insights into auxin biosynthesis and action, and uncover structural characteristics of auxin biosynthesis inhibitors.
尽管生长素的生物合成途径在植物生长和发育中具有重要作用,但它仍然难以捉摸。在这项研究中,我们分析了拟南芥 AtGenExpress 的激素系列转录组数据,发现氨基乙氧基乙烯基甘氨酸 (AVG) 具有最强的抗生长素活性。我们还通过进一步筛选鉴定了其他有效化合物,如 L-氨基-氧代苯丙酸 (AOPP)。这些抑制剂的特征在于它们抑制吡哆醛酶和/或氨基转移酶。它们降低了单子叶植物和双子叶植物内源 IAA 的水平。L-AOPP 抑制拟南芥主根伸长、向重力性、根偏斜和根毛形成中的主根发育。这种抑制作用在外源 IAA 处理后通常会恢复,并且恢复几乎完全达到非抑制幼苗的水平。这些化合物抑制了来自拟南芥和小麦的酶提取物中色氨酸到吲哚-3-丙酮酸的转化。我们的数据表明,这些抑制剂直接阻断了生长素的生物合成,其主要靶标是色氨酸氨基转移酶。该酶可能构成了高等植物中保守的主要生物合成途径之一。然而,每种抑制剂在水稻和番茄的地上部分和根部分别表现出不同的作用谱,表明器官和物种之间的生物合成途径存在多样性。我们的研究结果为生长素的生物合成和作用提供了新的见解,并揭示了生长素生物合成抑制剂的结构特征。