Suppr超能文献

生长素生物合成提高小麦产量。

The Auxin Biosynthetic Increases Grain Yield of Wheat.

作者信息

Shao An, Ma Wenying, Zhao Xueqiang, Hu Mengyun, He Xue, Teng Wan, Li Hui, Tong Yiping

机构信息

State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.

出版信息

Plant Physiol. 2017 Aug;174(4):2274-2288. doi: 10.1104/pp.17.00094. Epub 2017 Jun 16.

Abstract

Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat () to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 genes, among which 12 and three genes were phylogenetically close to Arabidopsis () AtTAR2 and AtTAR3, respectively. had the most abundant transcripts in the genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat.

摘要

控制主要的生长素生物合成途径以操纵生长素含量可能是对具有所需性状的作物进行基因工程的一个目标,但由于生长素含量过低或过高往往会导致发育抑制,进展甚微。在这里,我们对面包小麦()进行了全基因组分析,以鉴定在生长素生物合成的色氨酸依赖性途径中起作用的拟南芥色氨酸转氨酶1/色氨酸转氨酶相关(TAA1/TAR)基因。通过序列挖掘和基因克隆鉴定出15个基因,其中12个和3个基因分别在系统发育上与拟南芥()AtTAR2和AtTAR3相近。在这些基因中具有最丰富的转录本,主要在根中表达,并在低氮(N)供应下上调。敲低会导致营养和生殖缺陷,并在高氮和低氮条件下损害侧根(LR)生长。在小麦中过表达可增强不同氮供应水平下的LR分支、株高、穗数、籽粒产量和地上部氮积累。此外,在拟南芥中过表达可提高高氮和低氮条件下主根尖端、LR尖端、LR原基以及子叶和下胚轴中的生长素积累,并增加主根长度、可见LR数量和地上部鲜重。我们的结果表明,对小麦生长至关重要,并且在通过基因工程提高小麦籽粒产量方面也显示出潜力。

相似文献

1
The Auxin Biosynthetic Increases Grain Yield of Wheat.生长素生物合成提高小麦产量。
Plant Physiol. 2017 Aug;174(4):2274-2288. doi: 10.1104/pp.17.00094. Epub 2017 Jun 16.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验