Suppr超能文献

三磷酸甘油醛异构酶与反应中间体类似物复合物的原子分辨率晶体学:质子转移反应机制的新见解。

Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism.

机构信息

Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland.

出版信息

Proteins. 2010 Jun;78(8):1878-88. doi: 10.1002/prot.22701.

Abstract

Enzymes achieve their catalytic proficiency by precisely positioning the substrate and catalytic residues with respect to each other. Atomic resolution crystallography is an excellent tool to study the important details of these geometric active-site features. Here, we have investigated the reaction mechanism of triosephosphate isomerase (TIM) using atomic resolution crystallographic studies at 0.82-A resolution of leishmanial TIM complexed with the well-studied reaction-intermediate analog phosphoglycolohydroxamate (PGH). Remaining unresolved aspects of the reaction mechanism of TIM such as the protonation state of the first reaction intermediate and the properties of the hydrogen-bonding interactions in the active site are being addressed. The hydroxamate moiety of PGH interacts via unusually short hydrogen bonds of its N1-O1 moiety with the carboxylate group of the catalytic glutamate (Glu167), for example, the distance of N1(PGH)-OE2(Glu167) is 2.69 +/- 0.01 A and the distance of O1(PGH)-OE1(Glu167) is 2.60 +/- 0.01 A. Structural comparisons show that the side chain of the catalytic base (Glu167) can move during the reaction cycle in a small cavity, located above the hydroxamate plane. The structure analysis suggests that the hydroxamate moiety of PGH is negatively charged. Therefore, the bound PGH mimics the negatively charged enediolate intermediate, which is formed immediately after the initial proton abstraction from DHAP by the catalytic glutamate. The new findings are discussed in the context of the current knowledge of the TIM reaction mechanism.

摘要

酶通过精确地将底物和催化残基彼此定位来实现其催化效率。原子分辨率晶体学是研究这些几何活性位点特征重要细节的绝佳工具。在这里,我们通过原子分辨率晶体学研究,以 0.82-A 的分辨率研究了三角磷酸异构酶 (TIM) 的反应机制,该晶体与研究充分的反应中间体类似物磷酸甘油酸羟肟酸 (PGH) 复合。TIM 反应机制中仍未解决的方面,例如第一个反应中间体的质子化状态和活性位点氢键相互作用的性质,正在得到解决。PGH 的羟肟酸部分通过其 N1-O1 部分的异常短氢键与催化谷氨酸 (Glu167) 的羧基相互作用,例如,PGH 的 N1(PGH)-OE2(Glu167) 的距离为 2.69 +/- 0.01 A,PGH 的 O1(PGH)-OE1(Glu167) 的距离为 2.60 +/- 0.01 A。结构比较表明,催化碱 (Glu167) 的侧链可以在小腔中移动,该小腔位于羟肟酸平面上方,在反应循环中。结构分析表明,PGH 的羟肟酸部分带负电荷。因此,结合的 PGH 模拟了负电荷的烯二酰亚胺中间体,该中间体在催化谷氨酸对 DHAP 进行初始质子提取后立即形成。新发现将在 TIM 反应机制的现有知识背景下进行讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验