使用 OMEGA 生成构象:使用来自蛋白质数据库和剑桥结构数据库的高质量结构进行算法验证。
Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database.
机构信息
OpenEye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, New Mexico 87508, USA.
出版信息
J Chem Inf Model. 2010 Apr 26;50(4):572-84. doi: 10.1021/ci100031x.
Here, we present the algorithm and validation for OMEGA, a systematic, knowledge-based conformer generator. The algorithm consists of three phases: assembly of an initial 3D structure from a library of fragments; exhaustive enumeration of all rotatable torsions using values drawn from a knowledge-based list of angles, thereby generating a large set of conformations; and sampling of this set by geometric and energy criteria. Validation of conformer generators like OMEGA has often been undertaken by comparing computed conformer sets to experimental molecular conformations from crystallography, usually from the Protein Databank (PDB). Such an approach is fraught with difficulty due to the systematic problems with small molecule structures in the PDB. Methods are presented to identify a diverse set of small molecule structures from cocomplexes in the PDB that has maximal reliability. A challenging set of 197 high quality, carefully selected ligand structures from well-solved models was obtained using these methods. This set will provide a sound basis for comparison and validation of conformer generators in the future. Validation results from this set are compared to the results using structures of a set of druglike molecules extracted from the Cambridge Structural Database (CSD). OMEGA is found to perform very well in reproducing the crystallographic conformations from both these data sets using two complementary metrics of success.
在这里,我们介绍了 OMEGA 的算法和验证,这是一种系统的、基于知识的构象生成器。该算法由三个阶段组成:从片段库中组装初始 3D 结构;使用来自基于知识的角度列表中的值对所有可旋转的扭转进行穷举枚举,从而生成大量构象;通过几何和能量标准对该构象集进行采样。像 OMEGA 这样的构象生成器的验证通常是通过将计算得到的构象集与晶体学中的实验分子构象(通常来自蛋白质数据库,PDB)进行比较来进行的。由于 PDB 中小分子结构的系统问题,这种方法充满了困难。本文提出了一种方法,用于从 PDB 中的共复合物中识别出具有最大可靠性的多样化小分子结构集。使用这些方法获得了一组具有挑战性的 197 个高质量、精心选择的配体结构,这些结构来自于良好解析的模型。该数据集将为未来构象生成器的比较和验证提供可靠的基础。使用从剑桥结构数据库(CSD)中提取的一组类似药物分子的结构进行验证,并将结果与这两个数据集的晶体学构象的结果进行比较。使用两种互补的成功度量标准,发现 OMEGA 非常善于重现这两个数据集的晶体学构象。