Department of Mechanical Engineering, King's College London, Strand, London WC2R 2LS, UK.
J Magn Reson. 2010 May;204(1):139-44. doi: 10.1016/j.jmr.2010.02.019. Epub 2010 Feb 21.
The explosive pentaerythritol tetranitrate (PETN) C(CH(2)-O-NO(2))(4) has been studied by (1)H NMR and (14)N NQR. The (14)N NQR frequency and spin-lattice relaxation time T(1Q) for the nu(+) line have been measured at temperatures from 255 to 325K. The (1)H NMR spin-lattice relaxation time T(1) has been measured at frequencies from 1.8kHz to 40MHz and at temperatures from 250 to 390K. The observed variations are interpreted as due to hindered rotation of the NO(2) group about the bond to the oxygen atom of the CH(2)-O group, which produces a transient change in the dipolar coupling of the CH(2) protons, generating a step in the (1)H T(1) at frequencies between 2 and 100kHz. The same mechanism could also explain the two minima observed in the temperature variation of the (14)N NQR T(1Q) near 284 and 316K, due in this case to the transient change in the (14)N...(1)H dipolar interaction, the first attributed to hindered rotation of the NO(2) group and the second to an increase in torsional amplitude of the NO(2) group due to molecular distortion of the flexible CH(2)-O-NO(2) chain which produces a 15% increase in the oscillational amplitude of the CH(2) group. The correlation times governing the (1)H T(1) values are approximately 25 times longer than those governing the (14)N NQR T(1Q), explained by the slow spin-lattice cross-coupling between the two spin systems. At higher frequencies, the (1)H T(1) dispersion results show well-resolved dips between 200 and 904kHz assigned to level crossing with (14)N and weaker features between 3 and 5MHz tentatively assigned to level crossing with (17)O.
五聚硝戊四醇(PETN)C(CH(2)-O-NO(2))(4) 已通过(1)H NMR 和(14)N NQR 进行研究。在 255 至 325K 的温度下,已测量了(14)N NQR 频率和 nu(+)线的自旋晶格弛豫时间 T(1Q)。在 1.8kHz 至 40MHz 的频率和 250 至 390K 的温度下,已测量了(1)H NMR 自旋晶格弛豫时间 T(1)。观察到的变化解释为由于 NO(2)基团绕 CH(2)-O 基团的氧原子的受阻旋转,这导致 CH(2)质子的偶极耦合的瞬态变化,在 2 至 100kHz 之间的频率产生(1)H T(1)的阶跃。同样的机制也可以解释在 284 和 316K 附近观察到的(14)N NQR T(1Q)温度变化中的两个最小值,这在这种情况下归因于(14)N...(1)H 偶极相互作用的瞬态变化,第一个归因于 NO(2)基团的受阻旋转,第二个归因于由于柔性 CH(2)-O-NO(2)链的分子变形而导致的 NO(2)基团的扭转幅度增加,这导致 CH(2)基团的振荡幅度增加 15%。控制(1)H T(1)值的相关时间大约是控制(14)N NQR T(1Q)的相关时间的 25 倍,这解释了两个自旋系统之间的慢自旋晶格交叉耦合。在更高的频率下,(1)H T(1)色散结果显示在 200 至 904kHz 之间有很好分辨的凹陷,归因于与(14)N 的能级交叉,而在 3 至 5MHz 之间有较弱的特征,暂时归因于与(17)O 的能级交叉。