Information Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
IEEE Trans Med Imaging. 2010 May;29(5):1173-81. doi: 10.1109/TMI.2010.2042805. Epub 2010 Mar 15.
Partially parallel imaging with localized sensitivities is a fast parallel image reconstruction method for both Cartesian and non-Cartesian trajectories, but suffers from aliasing artifacts when there are deviations from the assumption of perfect localization. Such reconstructions would normally crop the individual coil images to remove the artifacts prior to combination. However, the sampling densities in variable-density k-space trajectories support different field-of-views for separate regions in k -space. In fact, the higher sampling density of low frequencies can be used to reconstruct a bigger field-of-view without introducing aliasing artifacts and the resulting image signal-to-noise ratio (SNR) can be improved. A novel, fast variable-density parallel imaging method is presented, which reconstructs different field-of-views from separate frequencies according to the local sampling density in k-space. Aliasing-suppressed images can be produced with high SNR-efficiency without the need for accurate estimation of coil sensitivities and complex or iterative computations.
局部并行成像与局部灵敏度是一种用于笛卡尔和非笛卡尔轨迹的快速并行图像重建方法,但在存在与完美定位假设的偏差时会出现伪影。在这种情况下,通常会裁剪各个线圈图像以在组合之前去除伪影。然而,变密度 k 空间轨迹中的采样密度支持 k 空间中不同区域的不同视野。实际上,较低频率的较高采样密度可用于重建更大的视野而不会引入伪影,并且可以提高所得图像的信噪比 (SNR)。提出了一种新颖的、快速的变密度并行成像方法,该方法根据 k 空间中的局部采样密度从不同频率重建不同的视野。可以在无需准确估计线圈灵敏度和复杂或迭代计算的情况下,以高效率产生具有高 SNR 的抗混叠图像。