Suppr超能文献

使用神经网络进行通用轨迹的复合磁共振图像重建和去交织。

Composite MR image reconstruction and unaliasing for general trajectories using neural networks.

机构信息

Department of Electrical Engineering, Indian Institute of Science, Bangalore, India-560012.

出版信息

Magn Reson Imaging. 2010 Dec;28(10):1468-84. doi: 10.1016/j.mri.2010.06.021. Epub 2010 Sep 17.

Abstract

In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called "Composite Reconstruction And Unaliasing using Neural Networks" (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively.

摘要

在快速并行磁共振成像中,图像重建问题具有挑战性。在这里,我们提出了一种新的基于神经网络框架的数据重建技术,称为“使用神经网络的复合重建和去卷绕”(CRAUNN),用于获取任意一般轨迹的数据。CRAUNN 基于这样的观察,即无论欠采样采集仅包含低频还是包含高频,混叠的性质都保持不变。在这里,使用包含密集采样低频的采集来学习从混叠线圈图像重建无混叠图像所需的变换。神经网络被用作机器学习工具来学习变换,以便从实际采集的稀疏采样低频和高频中获得所需的无混叠图像。CRAUNN 在图像域中运行,不需要显式的线圈灵敏度估计。它也独立于所使用的采样轨迹,可以应用于任意轨迹。作为初步试验,该技术首先应用于笛卡尔轨迹采样数据。在真实和合成数据上使用径向和螺旋轨迹进行的实验表明了该方法的性能。重建误差取决于加速因子和采样轨迹。结果发现,当使用径向轨迹时,可以获得更高的加速因子。我们还提出了与现有技术的比较。在笛卡尔、径向和螺旋情况下,分别可以达到高达 4、6 和 4 的加速因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验