Suppr超能文献

交替投影去马赛克:理论与快速一步实现。

Demosaicking by alternating projections: theory and fast one-step implementation.

机构信息

Audiovisual Communications Laboratory, School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

出版信息

IEEE Trans Image Process. 2010 Aug;19(8):2085-98. doi: 10.1109/TIP.2010.2045710. Epub 2010 Mar 15.

Abstract

Color image demosaicking is a key process in the digital imaging pipeline. In this paper, we study a well-known and influential demosaicking algorithm based upon alternating projections (AP), proposed by Gunturk, Altunbasak and Mersereau in 2002. Since its publication, the AP algorithm has been widely cited and compared against in a series of more recent papers in the demosaicking literature. Despite good performances, a limitation of the AP algorithm is its high computational complexity. We provide three main contributions in this paper. First, we present a rigorous analysis of the convergence property of the AP demosaicking algorithm, showing that it is a contraction mapping, with a unique fixed point. Second, we show that this fixed point is in fact the solution to a constrained quadratic minimization problem, thus, establishing the optimality of the AP algorithm. Finally, using the tool of polyphase representation, we show how to obtain the results of the AP algorithm in a single step, implemented as linear filtering in the polyphase domain. Replacing the original iterative procedure by the proposed one-step solution leads to substantial computational savings, by about an order of magnitude in our experiments.

摘要

彩色图像去马赛克是数字成像管道中的一个关键过程。在本文中,我们研究了一种基于交替投影(AP)的著名且有影响力的去马赛克算法,该算法由 Gunturk、Altunbasak 和 Mersereau 于 2002 年提出。自发表以来,AP 算法已被广泛引用,并在去马赛克文献中的一系列最新论文中进行了比较。尽管性能良好,但 AP 算法的一个局限性是其计算复杂度高。本文主要有三个贡献。首先,我们对 AP 去马赛克算法的收敛特性进行了严格的分析,证明它是一个压缩映射,具有唯一的不动点。其次,我们证明这个不动点实际上是一个约束二次最小化问题的解,从而证明了 AP 算法的最优性。最后,我们使用多相表示的工具,展示了如何在单个步骤中获得 AP 算法的结果,在多相域中实现为线性滤波。通过将原始迭代过程替换为所提出的一步解决方案,在我们的实验中,计算节省了大约一个数量级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验