Suppr超能文献

利用稀疏性约束增强耦合多通道图像。

Enhancement of coupled multichannel images using sparsity constraints.

机构信息

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

IEEE Trans Image Process. 2010 Aug;19(8):2115-26. doi: 10.1109/TIP.2010.2045701. Epub 2010 Mar 15.

Abstract

We consider the problem of joint enhancement of multichannel images with pixel based constraints on the multichannel data. Previous work by Cetin and Karl introduced nonquadratic regularization methods for SAR image enhancement using sparsity enforcing penalty terms. We formulate an optimization problem that jointly enhances complex-valued multichannel images while preserving the cross-channel information, which we include as constraints tying the multichannel images together. We pose this problem as a joint optimization problem with constraints. We first reformulate it as an equivalent (unconstrained) dual problem and develop a numerically-efficient method for solving it. We develop the Dual Descent method, which has low complexity, for solving the joint optimization problem. The algorithm is applied to both an interferometric synthetic aperture radar (IFSAR) problem, in which the relative phase between two complex-valued images indicate height, and to a synthetic multimodal medical image example.

摘要

我们考虑了一种基于像素的多通道图像联合增强问题,对多通道数据有约束。Cetin 和 Karl 的早期工作提出了使用稀疏惩罚项的 SAR 图像增强的非二次正则化方法。我们提出了一个联合增强复值多通道图像的优化问题,同时保留了跨通道信息,我们将其作为约束条件,将多通道图像联系在一起。我们将这个问题作为一个具有约束条件的联合优化问题来解决。我们首先将其重新表述为一个等价的(无约束的)对偶问题,并开发了一种有效的数值求解方法。我们开发了对偶下降法来求解联合优化问题,该方法复杂度低。该算法应用于干涉合成孔径雷达(IFSAR)问题,其中两个复值图像之间的相对相位表示高度,以及一个合成多模态医学图像示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验