Suppr超能文献

合成孔径雷达图像的多区域水平集分割

Multiregion level-set partitioning of synthetic aperture radar images.

作者信息

Ben Ayed Ismail, Mitiche Amar, Belhadj Ziad

机构信息

Institut National de la Recherche Scientifique, INRS-EMT, 800, de La Gauchetière Ouest, Montréal, QC, H5A 1K6, Canada.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):793-800. doi: 10.1109/TPAMI.2005.106.

Abstract

The purpose of this study is to investigate Synthetic Aperture Radar (SAR) image segmentation into a given but arbitrary number of gamma homogeneous regions via active contours and level sets. The segmentation of SAR images is a difficult problem due to the presence of speckle which can be modeled as strong, multiplicative noise. The proposed algorithm consists of evolving simple closed planar curves within an explicit correspondence between the interiors of curves and regions of segmentation to minimize a criterion containing a term of conformity of data to a speckle model of noise and a term of regularization. Results are shown on both synthetic and real images.

摘要

本研究的目的是通过活动轮廓和水平集将合成孔径雷达(SAR)图像分割成给定的任意数量的伽马均匀区域。由于存在斑点(可建模为强乘性噪声),SAR图像的分割是一个难题。所提出的算法包括在曲线内部与分割区域之间的显式对应关系内演化简单封闭平面曲线,以最小化一个包含数据与噪声斑点模型的一致性项和一个正则化项的准则。在合成图像和真实图像上均展示了结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验