Suppr超能文献

用于 131I-替莫唑胺治疗非霍奇金淋巴瘤患者的患者特异性三维剂量学中纳入生物有效剂量和等效均匀剂量的方法。

Methodology to incorporate biologically effective dose and equivalent uniform dose in patient-specific 3-dimensional dosimetry for non-Hodgkin lymphoma patients targeted with 131I-tositumomab therapy.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010, USA.

出版信息

J Nucl Med. 2010 Apr;51(4):654-9. doi: 10.2967/jnumed.109.067298. Epub 2010 Mar 17.

Abstract

UNLABELLED

A 3-dimensional (3D) imaging-based patient-specific dosimetry methodology incorporating antitumor biologic effects using biologically effective dose (BED) and equivalent uniform dose (EUD) was developed in this study. The methodology was applied to the dosimetry analysis of 6 non-Hodgkin lymphoma patients with a total of 10 tumors.

METHODS

Six registered SPECT/CT scans were obtained for each patient treated with (131)I-labeled antibody. Three scans were obtained after tracer administration and 3 after therapy administration. The SPECT/CT scans were used to generate 3D images of cumulated activity. The cumulated activity images and corresponding CT scans were used as input to Monte Carlo dose-rate calculations. The dose-rate distributions were integrated over time to obtain 3D absorbed dose distributions. The time-dependent 3D cumulative dose distributions were used to generate 3D BED distributions. Techniques to incorporate the effect of unlabeled antibody (cold protein) in the BED analysis were explored. Finally, BED distributions were used to estimate an EUD for each tumor volume. Model parameters were determined from optimal fits to tumor regression data. The efficiency of dose delivery to tumors--the ratio of EUD to cumulative dose--was extracted for each tumor and correlated with patient response parameters.

RESULTS

The model developed in this study was validated for dosimetry of non-Hodgkin lymphoma patients treated with (131)I-labeled antibody. Correlations between therapy efficiency generated from the model and tumor response were observed using averaged model parameters. Model parameter determination favored a threshold for the cold effect and typical magnitude for tumor radiosensitivity parameters.

CONCLUSION

The inclusion of radiobiologic effects in the dosimetry modeling of internal emitter therapy provides a powerful platform to investigate correlations of patient outcome with planned therapy.

摘要

目的

本研究开发了一种基于三维(3D)成像的患者特异性剂量学方法,该方法结合了使用生物有效剂量(BED)和等效均匀剂量(EUD)的抗肿瘤生物效应。该方法应用于 10 个肿瘤的 6 例非霍奇金淋巴瘤患者的剂量分析。

方法

每位接受(131)I 标记抗体治疗的患者均获得 6 次注册 SPECT/CT 扫描。治疗前进行 3 次扫描,治疗后进行 3 次扫描。SPECT/CT 扫描用于生成累积活性的 3D 图像。累积活性图像和相应的 CT 扫描用作蒙特卡罗剂量率计算的输入。对剂量率分布进行时间积分,得到 3D 吸收剂量分布。使用时间依赖的 3D 累积剂量分布生成 3D BED 分布。探讨了在 BED 分析中纳入未标记抗体(冷蛋白)效应的技术。最后,使用 BED 分布估算每个肿瘤体积的 EUD。模型参数通过对肿瘤回归数据的最佳拟合来确定。从每个肿瘤中提取剂量输送效率(EUD 与累积剂量的比值),并与患者反应参数相关联。

结果

本研究开发的模型已验证用于接受(131)I 标记抗体治疗的非霍奇金淋巴瘤患者的剂量学。使用平均模型参数观察到从模型生成的治疗效率与肿瘤反应之间的相关性。模型参数的确定有利于冷效应的阈值和肿瘤放射敏感性参数的典型幅度。

结论

在内部发射体治疗的剂量建模中纳入放射生物学效应为研究患者结局与计划治疗的相关性提供了一个强大的平台。

相似文献

4
Tumor-Absorbed Dose Predicts Progression-Free Survival Following (131)I-Tositumomab Radioimmunotherapy.
J Nucl Med. 2014 Jul;55(7):1047-53. doi: 10.2967/jnumed.113.136044. Epub 2014 May 19.
6
Bio-effect model applied to 131I radioimmunotherapy of refractory non-Hodgkin's lymphoma.
Eur J Nucl Med Mol Imaging. 2011 May;38(5):874-83. doi: 10.1007/s00259-010-1699-3. Epub 2010 Dec 21.
7
Arterial wall dosimetry for non-Hodgkin lymphoma patients treated with radioimmunotherapy.
J Nucl Med. 2010 Mar;51(3):368-75. doi: 10.2967/jnumed.109.069575. Epub 2010 Feb 11.

引用本文的文献

1
Immunological effects of radiopharmaceutical therapy.
Front Nucl Med. 2024 Apr 4;4:1331364. doi: 10.3389/fnume.2024.1331364. eCollection 2024.
2
Small molecules and conjugates as theranostic agents.
RSC Chem Biol. 2023 Sep 2;4(11):826-849. doi: 10.1039/d3cb00073g. eCollection 2023 Nov 1.
3
Dosimetry in Radiopharmaceutical Therapy.
J Nucl Med. 2022 Oct;63(10):1467-1474. doi: 10.2967/jnumed.121.262305.
4
Personalized Dosimetry in the Context of Radioiodine Therapy for Differentiated Thyroid Cancer.
Diagnostics (Basel). 2022 Jul 21;12(7):1763. doi: 10.3390/diagnostics12071763.
6
Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources.
J Nucl Med. 2021 Dec;62(Suppl 3):3S-11S. doi: 10.2967/jnumed.121.262749.
7
Tumor Response to Radiopharmaceutical Therapies: The Knowns and the Unknowns.
J Nucl Med. 2021 Dec;62(Suppl 3):12S-22S. doi: 10.2967/jnumed.121.262750.
8
Radiopharmaceutical therapy in cancer: clinical advances and challenges.
Nat Rev Drug Discov. 2020 Sep;19(9):589-608. doi: 10.1038/s41573-020-0073-9. Epub 2020 Jul 29.

本文引用的文献

1
Method for Fast CT/SPECT-Based 3D Monte Carlo Absorbed Dose Computations in Internal Emitter Therapy.
IEEE Trans Nucl Sci. 2007 Feb 17;54(1):146-151. doi: 10.1109/TNS.2006.889164.
2
Use of integrated SPECT/CT imaging for tumor dosimetry in I-131 radioimmunotherapy: a pilot patient study.
Cancer Biother Radiopharm. 2009 Aug;24(4):417-26. doi: 10.1089/cbr.2008.0568.
3
Update: the case for patient-specific dosimetry in radionuclide therapy.
Cancer Biother Radiopharm. 2008 Jun;23(3):273-84. doi: 10.1089/cbr.2007.0445.
7
The radioisotope contributes significantly to the activity of radioimmunotherapy.
Clin Cancer Res. 2004 Dec 1;10(23):7792-8. doi: 10.1158/1078-0432.CCR-04-0756.
9
Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin's lymphoma.
Int J Radiat Oncol Biol Phys. 2004 Aug 1;59(5):1274-87. doi: 10.1016/j.ijrobp.2004.02.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验