Suppr超能文献

细胞外信号调节激酶和 GEF-H1 介导去极化诱导的 Rho 激活和细胞旁通透性增加。

Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase.

机构信息

St. Michael's Hospital, Toronto, ON, Canada.

出版信息

Am J Physiol Cell Physiol. 2010 Jun;298(6):C1376-87. doi: 10.1152/ajpcell.00408.2009. Epub 2010 Mar 17.

Abstract

Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular K(+) concentration, the lipophilic cation tetraphenylphosphonium, or l-alanine, which is taken up by electrogenic Na(+) cotransport) all provoke robust phosphorylation of ERK in LLC-PK1 and Madin-Darby canine kidney (MDCK) cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified the GTP/GDP exchange factor GEF-H1 as the ERK-regulated critical exchange factor responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that 1) depolarization activated GEF-H1 but not p115RhoGEF, 2) short interfering RNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway, and 3) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na(+)-K(+) pump inhibitor ouabain also caused ERK, GEF-H1, and Rho activation, partially due to its depolarizing effect. Regarding the functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells and that this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation incompetent) MLC. Taken together, we propose that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium.

摘要

质膜去极化激活 Rho/Rho 激酶(ROK)途径,从而增强肌球蛋白轻链(MLC)磷酸化,这被认为是细胞旁通透性的关键调节因子。然而,将去极化与 Rho 激活和通透性变化偶联的上游机制尚不清楚。在这里,我们表明三种不同的去极化刺激(高细胞外 K+浓度、脂溶性阳离子四苯磷或 L-丙氨酸,它通过电活性 Na+共转运被摄取)都能强烈地使 LLC-PK1 和 Madin-Darby 犬肾(MDCK)细胞中的 ERK 磷酸化。重要的是,ERK 的抑制阻止了去极化诱导的 Rho 激活。为了寻找潜在的机制,我们已经确定了 GTP/GDP 交换因子 GEF-H1 作为 ERK 调节的关键交换因子,负责去极化诱导的 Rho 激活。这一结论基于我们的发现:1)去极化激活了 GEF-H1,但没有激活 p115RhoGEF;2)短干扰 RNA 介导的 GEF-H1 沉默消除了 Rho 通路的激活;3)ERK 抑制阻止了 GEF-H1 的激活。此外,我们发现,Na+-K+泵抑制剂哇巴因也会导致 ERK、GEF-H1 和 Rho 的激活,部分原因是其去极化作用。关于这条新发现的通路的功能后果,我们发现去极化增加了 LLC-PK1 和 MDCK 细胞的细胞旁通透性,而使用 blebbistatin 或磷酸化失活(磷酸化无能)MLC 抑制肌球蛋白可以减轻这种作用。总之,我们提出 ERK/GEF-H1/Rho/ROK/pMLC 途径可能是一种中央机制,通过该机制,电活性跨膜转运过程控制肌球蛋白磷酸化,并调节管状上皮细胞的细胞旁转运。

相似文献

1
Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase.
Am J Physiol Cell Physiol. 2010 Jun;298(6):C1376-87. doi: 10.1152/ajpcell.00408.2009. Epub 2010 Mar 17.
2
Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells.
Am J Physiol Cell Physiol. 2005 Sep;289(3):C673-85. doi: 10.1152/ajpcell.00481.2004. Epub 2005 Apr 27.
6
GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L540-8. doi: 10.1152/ajplung.00259.2005. Epub 2005 Oct 28.
8
Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions.
Mol Biol Cell. 2007 Sep;18(9):3429-39. doi: 10.1091/mbc.e07-04-0315. Epub 2007 Jun 27.
9
Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells.
J Biol Chem. 2014 Feb 14;289(7):4206-18. doi: 10.1074/jbc.M113.506816. Epub 2013 Dec 19.

引用本文的文献

1
Keratinocyte-derived VEGF-A is an essential pro-migratory autocrine mediator, acting through the KDR/GEF-H1/RhoA pathway.
Front Cell Dev Biol. 2025 Jul 17;13:1601887. doi: 10.3389/fcell.2025.1601887. eCollection 2025.
2
A Note of Caution: Gramicidin Affects Signaling Pathways Independently of Its Effects on Plasma Membrane Conductance.
Biomed Res Int. 2021 Oct 21;2021:2641068. doi: 10.1155/2021/2641068. eCollection 2021.
3
Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1.
Small GTPases. 2021 Sep-Nov;12(5-6):358-371. doi: 10.1080/21541248.2020.1840889. Epub 2020 Oct 30.
4
Integrating genetic and nongenetic drivers of somatic evolution during carcinogenesis: The biplane model.
Evol Appl. 2020 May 13;13(7):1651-1659. doi: 10.1111/eva.12973. eCollection 2020 Aug.
5
Influence of Endogenous Cardiac Glycosides, Digoxin, and Marinobufagenin in the Physiology of Epithelial Cells.
Cardiol Res Pract. 2019 Dec 30;2019:8646787. doi: 10.1155/2019/8646787. eCollection 2019.
6
Voltage-dependent activation of Rac1 by Na 1.5 channels promotes cell migration.
J Cell Physiol. 2020 Apr;235(4):3950-3972. doi: 10.1002/jcp.29290. Epub 2019 Oct 15.
8
ZO-1 protein is required for hydrogen peroxide to increase MDCK cell paracellular permeability in an ERK 1/2-dependent manner.
Am J Physiol Cell Physiol. 2018 Sep 1;315(3):C422-C431. doi: 10.1152/ajpcell.00185.2017. Epub 2018 Jun 6.
9
Crosslink between calcium and sodium signalling.
Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16.
10
Update on the role of endothelial cells in trauma.
Eur J Trauma Emerg Surg. 2018 Oct;44(5):667-677. doi: 10.1007/s00068-017-0812-8. Epub 2017 Jul 3.

本文引用的文献

1
Rho signaling and tight junction functions.
Physiology (Bethesda). 2010 Feb;25(1):16-26. doi: 10.1152/physiol.00034.2009.
2
Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3.
J Cell Biol. 2010 Feb 8;188(3):383-99. doi: 10.1083/jcb.200906155. Epub 2010 Feb 1.
3
Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors.
Mol Pharmacol. 2010 Feb;77(2):111-25. doi: 10.1124/mol.109.061234. Epub 2009 Oct 30.
4
House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium.
Am J Respir Cell Mol Biol. 2010 Jan;42(1):69-79. doi: 10.1165/rcmb.2008-0449OC. Epub 2009 Apr 16.
6
AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3549-54. doi: 10.1073/pnas.0812861106. Epub 2009 Feb 10.
7
Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation.
Fundam Clin Pharmacol. 2008 Dec;22(6):615-21. doi: 10.1111/j.1472-8206.2008.00620.x.
9
Sensors, transducers, and effectors that regulate cell size and shape.
J Biol Chem. 2009 Mar 13;284(11):6595-9. doi: 10.1074/jbc.R800049200. Epub 2008 Nov 12.
10
Ouabain-induced changes in aqueous humour outflow facility and trabecular meshwork cytoskeleton.
Br J Ophthalmol. 2009 Jan;93(1):104-9. doi: 10.1136/bjo.2008.142133. Epub 2008 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验