St. Michael's Hospital, Toronto, ON, Canada.
Am J Physiol Cell Physiol. 2010 Jun;298(6):C1376-87. doi: 10.1152/ajpcell.00408.2009. Epub 2010 Mar 17.
Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular K(+) concentration, the lipophilic cation tetraphenylphosphonium, or l-alanine, which is taken up by electrogenic Na(+) cotransport) all provoke robust phosphorylation of ERK in LLC-PK1 and Madin-Darby canine kidney (MDCK) cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified the GTP/GDP exchange factor GEF-H1 as the ERK-regulated critical exchange factor responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that 1) depolarization activated GEF-H1 but not p115RhoGEF, 2) short interfering RNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway, and 3) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na(+)-K(+) pump inhibitor ouabain also caused ERK, GEF-H1, and Rho activation, partially due to its depolarizing effect. Regarding the functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells and that this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation incompetent) MLC. Taken together, we propose that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium.
质膜去极化激活 Rho/Rho 激酶(ROK)途径,从而增强肌球蛋白轻链(MLC)磷酸化,这被认为是细胞旁通透性的关键调节因子。然而,将去极化与 Rho 激活和通透性变化偶联的上游机制尚不清楚。在这里,我们表明三种不同的去极化刺激(高细胞外 K+浓度、脂溶性阳离子四苯磷或 L-丙氨酸,它通过电活性 Na+共转运被摄取)都能强烈地使 LLC-PK1 和 Madin-Darby 犬肾(MDCK)细胞中的 ERK 磷酸化。重要的是,ERK 的抑制阻止了去极化诱导的 Rho 激活。为了寻找潜在的机制,我们已经确定了 GTP/GDP 交换因子 GEF-H1 作为 ERK 调节的关键交换因子,负责去极化诱导的 Rho 激活。这一结论基于我们的发现:1)去极化激活了 GEF-H1,但没有激活 p115RhoGEF;2)短干扰 RNA 介导的 GEF-H1 沉默消除了 Rho 通路的激活;3)ERK 抑制阻止了 GEF-H1 的激活。此外,我们发现,Na+-K+泵抑制剂哇巴因也会导致 ERK、GEF-H1 和 Rho 的激活,部分原因是其去极化作用。关于这条新发现的通路的功能后果,我们发现去极化增加了 LLC-PK1 和 MDCK 细胞的细胞旁通透性,而使用 blebbistatin 或磷酸化失活(磷酸化无能)MLC 抑制肌球蛋白可以减轻这种作用。总之,我们提出 ERK/GEF-H1/Rho/ROK/pMLC 途径可能是一种中央机制,通过该机制,电活性跨膜转运过程控制肌球蛋白磷酸化,并调节管状上皮细胞的细胞旁转运。