Pierre Sandra, Scholich Klaus
Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
Mol Biosyst. 2010 Apr;6(4):641-7. doi: 10.1039/b910653g. Epub 2010 Jan 12.
The function of a protein is determined on several levels including the genome, transcriptome, proteome, and the recently introduced toponome. The toponome describes the topology of all proteins, protein complexes and protein networks which constitute and influence the microenvironment of a given protein. It has long been known that cellular function or dysfunction of proteins strongly depends on their microenvironment and even small changes in protein arrangements can dramatically alter their activity/function. Thus, deciphering the topology of the multi-dimensional networks which control normal and disease-related pathways will give a better understanding of the mechanisms underlying disease development. While various powerful proteomic tools allow simultaneous quantification of proteins, only a limited number of techniques are available to visualize protein networks in intact cells and tissues. This review discusses a novel approach to map and decipher functional molecular networks of proteins in intact cells or tissues. Multi-epitope-ligand-cartography (MELC) is an imaging technology that identifies and quantifies protein networks at the subcellular level of morphologically-intact specimens. This immunohistochemistry-based method allows serial visualization and biomathematical analysis of up to 100 cellular components using fluorescence-labelled tags. The resulting toponome maps, simultaneously ranging from the subcellular to the supracellular scale, have the potential to provide the basis for a mathematical description of the dynamic topology of protein networks, and will complement current proteomic data to enhance the understanding of physiological and pathophysiological cell functions.
蛋白质的功能由多个层面决定,包括基因组、转录组、蛋白质组以及最近引入的拓扑组。拓扑组描述了构成并影响特定蛋白质微环境的所有蛋白质、蛋白质复合物和蛋白质网络的拓扑结构。长期以来人们都知道,蛋白质的细胞功能或功能障碍很大程度上取决于其微环境,甚至蛋白质排列的微小变化也能显著改变其活性/功能。因此,解读控制正常和疾病相关通路的多维网络的拓扑结构,将能更好地理解疾病发展的潜在机制。虽然各种强大的蛋白质组学工具可同时对蛋白质进行定量分析,但在完整细胞和组织中可视化蛋白质网络的技术却很有限。本综述讨论了一种在完整细胞或组织中绘制和解读蛋白质功能分子网络的新方法。多表位配体绘图法(MELC)是一种成像技术,可在形态完整标本的亚细胞水平识别和定量蛋白质网络。这种基于免疫组织化学的方法允许使用荧光标记标签对多达100种细胞成分进行连续可视化和生物数学分析。由此产生的拓扑组图谱,同时涵盖从亚细胞到超细胞尺度,有可能为蛋白质网络动态拓扑结构的数学描述提供基础,并将补充当前的蛋白质组学数据,以增进对生理和病理生理细胞功能的理解。