Department of Chemistry, Biological and Computational Chemistry, Umeå University, 901 87 UMEA, Sweden.
Phys Chem Chem Phys. 2010 Apr 7;12(13):3136-40. doi: 10.1039/b922817a. Epub 2010 Feb 10.
An analysis, based on the stochastic Liouville approach, is presented of the R(1)-NMRD or field dependent spin-lattice relaxation rate of amide protons. The proton relaxivity, displayed as R(1)-NMRD profiles, is calculated for a reorienting (1)H-(14)N spin group, where the inter spin coupling is due to spin dipole-dipole coupling or the scalar coupling. The quadrupole nucleus (14)N has an asymmetry parameter eta = 0.4 and a quadrupole interaction which is modulated by the overall reorientational motion of the protein. In the very slow reorientational regime, omega(Q)tau(R) >> 1 and tau(R) > or = 2.0 micros, both the dipole-dipole coupling and the scalar coupling yield a T(1)-NMRD profile with three marked peaks of proton spin relaxation enhancement. These peaks appear when the proton Larmor frequency, omega(I), matches the nuclear quadrupole spin transition frequencies: omega(1) = omega(Q)2eta/3, omega(2) = omega(Q)(1-eta/3) and omega(3) = omega(Q)(1 + eta/3), and the quadrupole spin system thus acts as a relaxation sink. The relative relaxation enhancements of the peaks are different for the dipole-dipole and the scalar coupling. Considering the dipole-dipole coupling, the low frequency peak, omega(1), is small compared to the high field peaks whereas for the scalar coupling the situation is changed. For slow tumbling proteins with a correlation time of tau(R) = 400 ns, omega(2) and omega(3) are not resolved but become one relatively broad peak. At even faster reorientation, tau(R) < 60 ns, the marked peaks disappear. In this motional regime, the main effect of the cross relaxation phenomenon is a subtle perturbation of the main amide proton T(1) NMRD dispersion. The low field part of it can be approximately described by a Lorentzian function: R(DD,SC)(0.01)/(1 + (omega(I)tau(R)3/2)(2)) whereas the high field part coincides with R(DD,SC)(0.01)/(1 + (omega(I)tau(R))(2)).
基于随机刘维尔方法,对酰胺质子的 R(1)-NMRD 或场依赖自旋晶格弛豫率进行了分析。质子弛豫率以 R(1)-NMRD 谱的形式显示,针对重新取向的 (1)H-(14)N 自旋组进行了计算,其中自旋之间的耦合是由于自旋偶极-偶极耦合或标量耦合引起的。四极核 (14)N 的不对称参数 eta = 0.4,并且四极相互作用受到蛋白质整体重新取向运动的调制。在非常缓慢的重新取向状态下,ω(Q)τ(R)>>1 且 τ(R)≥2.0 μs,偶极-偶极耦合和标量耦合都会导致质子自旋弛豫增强的 T(1)-NMRD 谱出现三个明显的峰。当质子拉莫尔频率 ω(I)与核四极自旋跃迁频率匹配时,这些峰出现:ω(1) = ω(Q)2eta/3、ω(2) = ω(Q)(1-eta/3) 和 ω(3) = ω(Q)(1 + eta/3),并且四极自旋系统充当弛豫汇。对于偶极-偶极和标量耦合,峰的相对弛豫增强是不同的。考虑偶极-偶极耦合,低频峰 ω(1)相对于高场峰较小,而对于标量耦合则相反。对于相关时间为 τ(R) = 400 ns 的缓慢翻滚蛋白质,ω(2)和 ω(3)未被分辨,但变成一个相对较宽的峰。在更快速的重新取向时,τ(R) < 60 ns,明显的峰消失。在这种运动状态下,交叉弛豫现象的主要影响是对主要酰胺质子 T(1)NMRD 弥散的微妙干扰。其低场部分可以用洛伦兹函数近似描述:R(DD,SC)(0.01)/(1 + (ω(I)τ(R)3/2)(2)),而高场部分与 R(DD,SC)(0.01)/(1 + (ω(I)τ(R))(2))一致。
Phys Chem Chem Phys. 2010-2-10
J Magn Reson. 2010-1-25
J Chem Phys. 2006-4-7
Solid State Nucl Magn Reson. 2011-8-12
Phys Chem Chem Phys. 2017-2-15
Solid State Nucl Magn Reson. 2008
Phys Chem Chem Phys. 2009-11-6
Sci Rep. 2024-10-22
Materials (Basel). 2020-9-30
Biomolecules. 2019-10-25