文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在缓慢转动的蛋白质中,四极矩增强的酰胺质子 1H 自旋晶格弛豫。

The quadrupole enhanced 1H spin-lattice relaxation of the amide proton in slow tumbling proteins.

机构信息

Department of Chemistry, Biological and Computational Chemistry, Umeå University, 901 87 UMEA, Sweden.

出版信息

Phys Chem Chem Phys. 2010 Apr 7;12(13):3136-40. doi: 10.1039/b922817a. Epub 2010 Feb 10.


DOI:10.1039/b922817a
PMID:20237701
Abstract

An analysis, based on the stochastic Liouville approach, is presented of the R(1)-NMRD or field dependent spin-lattice relaxation rate of amide protons. The proton relaxivity, displayed as R(1)-NMRD profiles, is calculated for a reorienting (1)H-(14)N spin group, where the inter spin coupling is due to spin dipole-dipole coupling or the scalar coupling. The quadrupole nucleus (14)N has an asymmetry parameter eta = 0.4 and a quadrupole interaction which is modulated by the overall reorientational motion of the protein. In the very slow reorientational regime, omega(Q)tau(R) >> 1 and tau(R) > or = 2.0 micros, both the dipole-dipole coupling and the scalar coupling yield a T(1)-NMRD profile with three marked peaks of proton spin relaxation enhancement. These peaks appear when the proton Larmor frequency, omega(I), matches the nuclear quadrupole spin transition frequencies: omega(1) = omega(Q)2eta/3, omega(2) = omega(Q)(1-eta/3) and omega(3) = omega(Q)(1 + eta/3), and the quadrupole spin system thus acts as a relaxation sink. The relative relaxation enhancements of the peaks are different for the dipole-dipole and the scalar coupling. Considering the dipole-dipole coupling, the low frequency peak, omega(1), is small compared to the high field peaks whereas for the scalar coupling the situation is changed. For slow tumbling proteins with a correlation time of tau(R) = 400 ns, omega(2) and omega(3) are not resolved but become one relatively broad peak. At even faster reorientation, tau(R) < 60 ns, the marked peaks disappear. In this motional regime, the main effect of the cross relaxation phenomenon is a subtle perturbation of the main amide proton T(1) NMRD dispersion. The low field part of it can be approximately described by a Lorentzian function: R(DD,SC)(0.01)/(1 + (omega(I)tau(R)3/2)(2)) whereas the high field part coincides with R(DD,SC)(0.01)/(1 + (omega(I)tau(R))(2)).

摘要

基于随机刘维尔方法,对酰胺质子的 R(1)-NMRD 或场依赖自旋晶格弛豫率进行了分析。质子弛豫率以 R(1)-NMRD 谱的形式显示,针对重新取向的 (1)H-(14)N 自旋组进行了计算,其中自旋之间的耦合是由于自旋偶极-偶极耦合或标量耦合引起的。四极核 (14)N 的不对称参数 eta = 0.4,并且四极相互作用受到蛋白质整体重新取向运动的调制。在非常缓慢的重新取向状态下,ω(Q)τ(R)>>1 且 τ(R)≥2.0 μs,偶极-偶极耦合和标量耦合都会导致质子自旋弛豫增强的 T(1)-NMRD 谱出现三个明显的峰。当质子拉莫尔频率 ω(I)与核四极自旋跃迁频率匹配时,这些峰出现:ω(1) = ω(Q)2eta/3、ω(2) = ω(Q)(1-eta/3) 和 ω(3) = ω(Q)(1 + eta/3),并且四极自旋系统充当弛豫汇。对于偶极-偶极和标量耦合,峰的相对弛豫增强是不同的。考虑偶极-偶极耦合,低频峰 ω(1)相对于高场峰较小,而对于标量耦合则相反。对于相关时间为 τ(R) = 400 ns 的缓慢翻滚蛋白质,ω(2)和 ω(3)未被分辨,但变成一个相对较宽的峰。在更快速的重新取向时,τ(R) < 60 ns,明显的峰消失。在这种运动状态下,交叉弛豫现象的主要影响是对主要酰胺质子 T(1)NMRD 弥散的微妙干扰。其低场部分可以用洛伦兹函数近似描述:R(DD,SC)(0.01)/(1 + (ω(I)τ(R)3/2)(2)),而高场部分与 R(DD,SC)(0.01)/(1 + (ω(I)τ(R))(2))一致。

相似文献

[1]
The quadrupole enhanced 1H spin-lattice relaxation of the amide proton in slow tumbling proteins.

Phys Chem Chem Phys. 2010-2-10

[2]
Mechanism of 1H-14N cross-relaxation in immobilized proteins.

J Magn Reson. 2010-1-25

[3]
Paramagnetic relaxation of protons in rotationally immobilized proteins.

J Chem Phys. 2006-4-7

[4]
Direct calculation of (1)H(2)O T(1) NMRD profiles and EPR lineshapes for the electron spin quantum numbers S = 1, 3/2, 2, 5/2, 3, 7/2, based on the stochastic Liouville equation combined with Brownian dynamics simulation.

Phys Chem Chem Phys. 2007-2-14

[5]
Quadrupole relaxation enhancement--application to molecular crystals.

Solid State Nucl Magn Reson. 2011-8-12

[6]
Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52.

J Magn Reson. 1999-4

[7]
Field-dependent nuclear relaxation of spins 1/2 induced by dipole-dipole couplings to quadrupole spins: LaF3 crystals as an example.

J Magn Reson. 2006-4

[8]
Correlated/non-correlated ion dynamics of charge-neutral ion couples: the origin of ionicity in ionic liquids.

Phys Chem Chem Phys. 2017-2-15

[9]
High-resolution study of nuclear magnetic relaxation dispersion of purine nucleotides: effects of spin-spin coupling.

Solid State Nucl Magn Reson. 2008

[10]
Electron spin relaxation at low field.

Phys Chem Chem Phys. 2009-11-6

引用本文的文献

[1]
Markers of low field NMR relaxation features of tissues.

Sci Rep. 2024-10-22

[2]
Water Dynamics in Highly Concentrated Protein Systems-Insight from Nuclear Magnetic Resonance Relaxometry.

Int J Mol Sci. 2023-2-17

[3]
Dynamics of Ionic Liquids in Confinement by Means of NMR Relaxometry-EMIM-FSI in a Silica Matrix as an Example.

Materials (Basel). 2020-9-30

[4]
Towards applying NMR relaxometry as a diagnostic tool for bone and soft tissue sarcomas: a pilot study.

Sci Rep. 2020-8-26

[5]
Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry.

Biomolecules. 2019-10-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索