Nesse William H, Clark Gregory A
Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
Biol Cybern. 2010 May;102(5):389-412. doi: 10.1007/s00422-010-0374-x. Epub 2010 Mar 17.
The role of relative spike timing on sensory coding and stochastic dynamics of small pulse-coupled oscillator networks is investigated physiologically and mathematically, based on the small biological eye network of the marine invertebrate Hermissenda. Without network interactions, the five inhibitory photoreceptors of the eye network exhibit quasi-regular rhythmic spiking; in contrast, within the active network, they display more irregular spiking but collective network rhythmicity. We investigate the source of this emergent network behavior first analyzing the role of relative input to spike-timing relationships in individual cells. We use a stochastic phase oscillator equation to model photoreceptor spike sequences in response to sequences of inhibitory current pulses. Although spike sequences can be complex and irregular in response to inputs, we show that spike timing is better predicted if relative timing of spikes to inputs is accounted for in the model. Further, we establish that greater noise levels in the model serve to destroy network phase-locked states that induce non-monotonic stimulus rate-coding, as predicted in Butson and Clark (J Neurophysiol 99:146-154, 2008a; J Neurophysiol 99:155-165, 2008b). Hence, rate-coding can function better in noisy spiking cells relative to non-noisy cells. We then study how relative input to spike-timing dynamics of single oscillators contribute to network-level dynamics. Relative timing interactions in the network sharpen the stimulus window that can trigger a spike, affecting stimulus encoding. Also, we derive analytical inter-spike interval distributions of cells in the model network, revealing that irregular Poisson-like spike emission and collective network rhythmicity are emergent properties of network dynamics, consistent with experimental observations. Our theoretical results generate experimental predictions about the nature of spike patterns in the Hermissenda eye.
基于海洋无脊椎动物海兔的小型生物眼网络,从生理学和数学角度研究了相对脉冲时间在小型脉冲耦合振荡器网络的感觉编码和随机动力学中的作用。在没有网络相互作用的情况下,眼网络的五个抑制性光感受器表现出准规则的节律性放电;相反,在活跃网络中,它们表现出更不规则的放电,但具有集体网络节律性。我们首先通过分析单个细胞中相对输入对脉冲时间关系的作用来研究这种涌现的网络行为的来源。我们使用随机相位振荡器方程来模拟光感受器对抑制性电流脉冲序列的放电序列。尽管放电序列对输入的响应可能复杂且不规则,但我们表明,如果在模型中考虑放电与输入的相对时间,则放电时间能得到更好的预测。此外,我们确定模型中更高的噪声水平会破坏诱导非单调刺激速率编码的网络锁相状态,正如布特森和克拉克所预测的那样(《神经生理学杂志》99:146 - 154,2008a;《神经生理学杂志》99:155 - 165,2008b)。因此,相对于无噪声细胞,速率编码在有噪声的放电细胞中能更好地发挥作用。然后,我们研究单个振荡器的相对输入对脉冲时间动态如何影响网络层面动力学。网络中的相对时间相互作用会锐化可触发放电的刺激窗口,从而影响刺激编码。此外,我们推导了模型网络中细胞的尖峰间隔分布解析表达式,揭示出不规则的泊松样放电发射和集体网络节律性是网络动力学的涌现特性,这与实验观察结果一致。我们的理论结果对海兔眼中放电模式性质产生了实验预测。