Suppr超能文献

一种针对癌症转录组的新型荟萃分析方法揭示了癌细胞中普遍存在的转录网络。

A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

作者信息

Niida Atsushi, Imoto Seiya, Nagasaki Masao, Yamaguchi Rui, Miyano Satoru

机构信息

Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

出版信息

Genome Inform. 2010 Jan;22:121-31.

Abstract

Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

摘要

尽管微阵列技术揭示了构成各种癌症表型基础的转录组多样性,但控制这些多样性的转录程序尚未得到很好的阐明。为了解码调控癌症转录组的转录程序,我们最近开发了一种名为EEM的计算方法,该方法从由先前生物学知识(如转录因子结合基序)定义的指定基因集中搜索表达模块。在本文中,我们扩展了EEM方法来预测癌症转录网络。从通过EEM鉴定的功能性转录因子结合基序和表达模块出发,我们预测了包含调控转录因子、相关基因本体(GO)术语以及转录因子结合基序之间相互作用的癌症转录网络。为了系统地分析广泛类型癌症中的转录程序,我们将基于EEM的网络预测方法应用于从公共数据库收集的122个微阵列数据集。这些数据集包含了约15000个针对包括乳腺、结肠、肺等各种组织来源的肿瘤样本的实验。这种基于EEM的荟萃分析成功揭示了一个在大部分癌症转录组中起作用的普遍存在的癌症转录网络;其中包括细胞周期和免疫相关的子网。这项研究证明了EEM的广泛适用性,并为全面理解癌细胞中的转录网络开辟了一条道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验