Lánský P, Musila M
Institute of Physiology, Czechoslovak Academy of Sciences, Prague.
Biol Cybern. 1991;64(4):285-91. doi: 10.1007/BF00199591.
The effect of a variable initial value is examined in Stein's stochastic neuronal model with synaptic reversal potentials under the conditions of a constant threshold and a constant input. The moments of the interspike interval distribution are presented as the functions of the initial depolarization which ranges from inhibitory reversal potential to the threshold potential. Normal, exponential and transformed Gamma distributions are tested for the initial value of depolarization. The coefficient of variation is shown to be greater than one when the initial depolarization is sufficiently above the resting level. An interpretation of this result in the terms of spatial facilitation is offered. The effect of a random initial value is found to be most pronounced for the neurons depolarized to a near threshold level.