Stein R B
University Laboratory of Physiology, Oxford, England.
Biophys J. 1967 Jan;7(1):37-68. doi: 10.1016/S0006-3495(67)86574-3. Epub 2008 Dec 31.
The pattern of nerve action potentials produced by unit permeability changes (quantal inputs) occurring at random is considered analytically and by computer simulation methods. The important parameters of a quantal input are size and duration. Varying both the mean and the probability density function of these parameters has calculable effects on the distribution of interspike intervals. Particular attention is paid to the relation between the mean rate of excitatory inputs and the mean frequency of nerve action potentials (input-output curve) and the relation between the coefficient of variation for the interval distribution and the mean interval (variability curve). In the absence of action potentials one can determine the parameters of the voltage distribution including the autocorrelation function and the power spectrum. These parameters can sometimes be used to approximate the variability of interspike intervals as a function of the threshold voltage. Different neuronal models are considered including one containing the Hodgkin-Huxley membrane equations. The negative feedback inherent in the Hodgkin-Huxley equations tends to produce a small negative serial correlation between successive intervals. The results are discussed in relation to the interpretation of experimental results.
通过解析方法和计算机模拟方法,对由随机发生的单位通透性变化(量子输入)所产生的神经动作电位模式进行了研究。量子输入的重要参数是大小和持续时间。改变这些参数的均值和概率密度函数,对峰间间隔的分布会产生可计算的影响。特别关注兴奋性输入的平均速率与神经动作电位的平均频率之间的关系(输入-输出曲线),以及间隔分布的变异系数与平均间隔之间的关系(变异性曲线)。在没有动作电位的情况下,可以确定电压分布的参数,包括自相关函数和功率谱。这些参数有时可用于近似峰间间隔的变异性作为阈值电压的函数。考虑了不同的神经元模型,包括一个包含霍奇金-赫胥黎膜方程的模型。霍奇金-赫胥黎方程中固有的负反馈倾向于在连续间隔之间产生小的负序列相关性。结合实验结果的解释对这些结果进行了讨论。