Suppr超能文献

神经元变异性的一些模型。

Some models of neuronal variability.

作者信息

Stein R B

机构信息

University Laboratory of Physiology, Oxford, England.

出版信息

Biophys J. 1967 Jan;7(1):37-68. doi: 10.1016/S0006-3495(67)86574-3. Epub 2008 Dec 31.

Abstract

The pattern of nerve action potentials produced by unit permeability changes (quantal inputs) occurring at random is considered analytically and by computer simulation methods. The important parameters of a quantal input are size and duration. Varying both the mean and the probability density function of these parameters has calculable effects on the distribution of interspike intervals. Particular attention is paid to the relation between the mean rate of excitatory inputs and the mean frequency of nerve action potentials (input-output curve) and the relation between the coefficient of variation for the interval distribution and the mean interval (variability curve). In the absence of action potentials one can determine the parameters of the voltage distribution including the autocorrelation function and the power spectrum. These parameters can sometimes be used to approximate the variability of interspike intervals as a function of the threshold voltage. Different neuronal models are considered including one containing the Hodgkin-Huxley membrane equations. The negative feedback inherent in the Hodgkin-Huxley equations tends to produce a small negative serial correlation between successive intervals. The results are discussed in relation to the interpretation of experimental results.

摘要

通过解析方法和计算机模拟方法,对由随机发生的单位通透性变化(量子输入)所产生的神经动作电位模式进行了研究。量子输入的重要参数是大小和持续时间。改变这些参数的均值和概率密度函数,对峰间间隔的分布会产生可计算的影响。特别关注兴奋性输入的平均速率与神经动作电位的平均频率之间的关系(输入-输出曲线),以及间隔分布的变异系数与平均间隔之间的关系(变异性曲线)。在没有动作电位的情况下,可以确定电压分布的参数,包括自相关函数和功率谱。这些参数有时可用于近似峰间间隔的变异性作为阈值电压的函数。考虑了不同的神经元模型,包括一个包含霍奇金-赫胥黎膜方程的模型。霍奇金-赫胥黎方程中固有的负反馈倾向于在连续间隔之间产生小的负序列相关性。结合实验结果的解释对这些结果进行了讨论。

相似文献

1
Some models of neuronal variability.
Biophys J. 1967 Jan;7(1):37-68. doi: 10.1016/S0006-3495(67)86574-3. Epub 2008 Dec 31.
3
How adaptation currents change threshold, gain, and variability of neuronal spiking.
J Neurophysiol. 2014 Mar;111(5):939-53. doi: 10.1152/jn.00586.2013. Epub 2013 Oct 30.
4
Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 1):051902. doi: 10.1103/PhysRevE.63.051902. Epub 2001 Apr 9.
5
Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density.
Biosystems. 2013 Jun;112(3):224-32. doi: 10.1016/j.biosystems.2012.12.006. Epub 2013 Jan 8.
7
Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
J Neurophysiol. 1998 Mar;79(3):1549-66. doi: 10.1152/jn.1998.79.3.1549.
9
The threshold conditions for initiation of action potentials by excitable cells.
J Physiol. 1966 Nov;187(1):129-62. doi: 10.1113/jphysiol.1966.sp008079.

引用本文的文献

1
Neuromorphic encoding strategies for a noisy magnetic sense.
J R Soc Interface. 2025 Jun;22(227):20240810. doi: 10.1098/rsif.2024.0810. Epub 2025 Jun 18.
2
Numerical investigation of singularly perturbed time lag parabolic differential-difference equations.
Heliyon. 2024 Dec 13;11(1):e41215. doi: 10.1016/j.heliyon.2024.e41215. eCollection 2025 Jan 15.
4
Probabilistic neural transfer function estimation with Bayesian system identification.
PLoS Comput Biol. 2024 Jul 31;20(7):e1012354. doi: 10.1371/journal.pcbi.1012354. eCollection 2024 Jul.
5
Extreme value statistics of nerve transmission delay.
PLoS One. 2024 Jul 5;19(7):e0306605. doi: 10.1371/journal.pone.0306605. eCollection 2024.
7
Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation.
Front Comput Neurosci. 2022 Oct 28;16:1006989. doi: 10.3389/fncom.2022.1006989. eCollection 2022.
8
Learning shapes cortical dynamics to enhance integration of relevant sensory input.
Neuron. 2023 Jan 4;111(1):106-120.e10. doi: 10.1016/j.neuron.2022.10.001. Epub 2022 Oct 24.
9
Predicting Spike Features of Hodgkin-Huxley-Type Neurons With Simple Artificial Neural Network.
Front Comput Neurosci. 2022 Feb 7;15:800875. doi: 10.3389/fncom.2021.800875. eCollection 2021.
10
Accurate numerical scheme for singularly perturbed parabolic delay differential equation.
BMC Res Notes. 2021 Sep 15;14(1):358. doi: 10.1186/s13104-021-05769-4.

本文引用的文献

1
A stochastic model of the repetitive activity of neurons.
Biophys J. 1966 Jan;6(1):53-69. doi: 10.1016/S0006-3495(66)86639-0.
2
Probabilistic firing of neurons considered as a first passage problem.
Biophys J. 1966 Jul;6(4):435-51. doi: 10.1016/S0006-3495(66)86668-7. Epub 2008 Dec 31.
3
The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ.
J Physiol. 1926 Apr 23;61(2):151-71. doi: 10.1113/jphysiol.1926.sp002281.
4
SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR.
J Gen Physiol. 1964 Nov;48(2):297-322. doi: 10.1085/jgp.48.2.297.
5
6
TIME SERIES ANALYSIS OF IMPULSE SEQUENCES OF THALAMIC SOMATIC SENSORY NEURONS.
J Neurophysiol. 1964 Jul;27:517-45. doi: 10.1152/jn.1964.27.4.517.
7
STATISTICAL ANALYSIS OF THE DARK DISCHARGE OF LATERAL GENICULATE NEURONES.
J Physiol. 1964 Apr;170(3):598-612. doi: 10.1113/jphysiol.1964.sp007352.
8
RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON.
Biophys J. 1964 Jan;4(1 Pt 1):41-68. doi: 10.1016/s0006-3495(64)86768-0.
9
A STUDY OF SPONTANEOUS MINIATURE POTENTIALS IN SPINAL MOTONEURONES.
J Physiol. 1963 Sep;168(2):389-422. doi: 10.1113/jphysiol.1963.sp007199.
10
Axon diameter and fluctuation in excitability.
Acta Morphol Neerl Scand. 1962;5:79-85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验