Suppr超能文献

时移去噪声源分离。

Time-shift denoising source separation.

机构信息

Laboratoire de Psychologie de la Perception, UMR 8581, CNRS and Université Paris Descartes, France.

出版信息

J Neurosci Methods. 2010 May 30;189(1):113-20. doi: 10.1016/j.jneumeth.2010.03.002. Epub 2010 Mar 16.

Abstract

I present a new method for removing unwanted components from neurophysiological recordings such as magnetoencephalography (MEG), electroencephalography (EEG), or multichannel electrophysiological or optical recordings. A spatiotemporal filter is designed to partition recorded activity into noise and signal components, and the latter are projected back to sensor space to obtain clean data. To obtain the required filter, the original data waveforms are delayed by a series of time delays, and linear combinations are formed based on a criterion such as reproducibility over stimulus repetitions. The time shifts allow the algorithm to automatically synthesize multichannel finite impulse response filters, improving denoising capabilities over static spatial filtering methods. The method is illustrated with synthetic data and real data from several biomagnetometers, for which the raw signal-to-noise ratio of stimulus-evoked components was unfavorable. With this technique, components with power ratios relative to noise as small as 1 part per million can be retrieved.

摘要

我提出了一种新的方法,用于去除神经生理学记录(如脑磁图(MEG)、脑电图(EEG)或多通道电生理或光学记录)中的不需要的成分。设计了一个时空滤波器,将记录的活动分为噪声和信号成分,然后将后者投影回传感器空间以获得干净的数据。为了获得所需的滤波器,原始数据波形被延迟了一系列时间延迟,并且基于诸如在刺激重复中可再现性的标准形成线性组合。时间移位允许算法自动合成多通道有限脉冲响应滤波器,从而提高了相对于静态空间滤波方法的去噪能力。该方法用合成数据和来自几个生物磁强计的实际数据进行了说明,对于这些数据,刺激诱发成分的原始信噪比不利。使用该技术,可以检索到相对于噪声的功率比小到 1 百万分之一的成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验