Suppr超能文献

心肌细胞中热休克蛋白 90-Cdc37 伴侣复合物对非经典 p38α 的特异性调节。

Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.

机构信息

Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

出版信息

Circ Res. 2010 Apr 30;106(8):1404-12. doi: 10.1161/CIRCRESAHA.109.213769. Epub 2010 Mar 18.

Abstract

RATIONALE

p38 is an important stress activated protein kinase involved in gene regulation, proliferation, differentiation, and cell death regulation in heart. p38 kinase activity can be induced through canonical pathway via upstream kinases or by noncanonical autophosphorylation. The intracellular p38 kinase activity is tightly regulated and maintained at low level under basal condition. The underlying regulatory mechanism for canonical p38 kinase activation is well-studied, but the regulation of noncanonical p38 autophosphorylation remains poorly understood.

OBJECTIVE

We investigated the molecular basis for the regulation of noncanonical p38 autophosphorylation and its potential functional impact in cardiomyocytes.

METHODS AND RESULTS

Using both proteomic and biochemical tools, we established that heat shock protein (Hsp)90-Cdc37 chaperones are part of the p38alpha signaling complex in mammalian cells both in vitro and in vivo. The Hsp90-Cdc37 chaperone complex interacts with p38 via direct binding between p38 and Cdc37. Cdc37 expression is both sufficient and necessary to suppress noncanonical p38 activation via autophosphorylation at either basal state or under TAB1 (TAK1 binding protein-1) induction. In contrast, Cdc37 expression has no impact on p38 activation by canonical upstream kinase MKK3 or oxidative stress. Furthermore, Hsp90 inhibition results in p38 activation via autophosphorylation, and p38 activity contribute to apoptotic cell death induced by Hsp90 inhibition.

CONCLUSION

Our study has revealed a so far uncharacterized function of Hsp90-Cdc37 as an endogenous regulator of noncanonical p38 activity.

摘要

理由

p38 是一种重要的应激激活蛋白激酶,参与基因调控、增殖、分化和细胞死亡调节。p38 激酶活性可通过上游激酶的经典途径或非经典的自身磷酸化诱导。细胞内 p38 激酶活性在基础条件下受到严格调控,维持在低水平。经典 p38 激酶激活的潜在调控机制研究得较为透彻,但非经典 p38 自身磷酸化的调控仍知之甚少。

目的

我们研究了非经典 p38 自身磷酸化的调控机制及其在心肌细胞中的潜在功能影响。

方法和结果

利用蛋白质组学和生化工具,我们在体外和体内均证实热休克蛋白(Hsp)90-Cdc37 伴侣蛋白是哺乳动物细胞中 p38alpha 信号复合物的一部分。Hsp90-Cdc37 伴侣复合物通过 p38 和 Cdc37 之间的直接结合与 p38 相互作用。Cdc37 的表达足以抑制非经典 p38 的激活,无论是在基础状态还是在 TAB1(TAK1 结合蛋白-1)诱导下,通过自身磷酸化。相比之下,Cdc37 的表达对经典上游激酶 MKK3 或氧化应激引起的 p38 激活没有影响。此外,Hsp90 抑制导致 p38 通过自身磷酸化激活,并且 p38 活性有助于 Hsp90 抑制诱导的细胞凋亡。

结论

我们的研究揭示了 Hsp90-Cdc37 作为非经典 p38 活性的内源性调节因子的一个迄今尚未描述的功能。

相似文献

1
Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
Circ Res. 2010 Apr 30;106(8):1404-12. doi: 10.1161/CIRCRESAHA.109.213769. Epub 2010 Mar 18.
4
Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling.
J Biol Chem. 2004 May 7;279(19):19457-63. doi: 10.1074/jbc.M311377200. Epub 2004 Mar 4.
5
Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
Mol Cell. 2012 Aug 10;47(3):434-43. doi: 10.1016/j.molcel.2012.05.015. Epub 2012 Jun 21.
6
Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.
Reprod Biol Endocrinol. 2021 Mar 4;19(1):39. doi: 10.1186/s12958-021-00723-2.
7
p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.
Mol Cell Biol. 1999 Mar;19(3):1661-72. doi: 10.1128/MCB.19.3.1661.
9
The Activity and Stability of p56Lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37.
Int J Mol Sci. 2020 Dec 24;22(1):126. doi: 10.3390/ijms22010126.
10
HSP90 is required for TAK1 stability but not for its activation in the pro-inflammatory signaling pathway.
FEBS Lett. 2008 Dec 10;582(29):4023-31. doi: 10.1016/j.febslet.2008.10.053. Epub 2008 Nov 19.

引用本文的文献

1
Episodic pain in Fabry disease is mediated by a heat shock protein-TRPA1 axis.
bioRxiv. 2025 Mar 26:2025.02.20.639340. doi: 10.1101/2025.02.20.639340.
2
PARP1 Promotes Heart Regeneration and Cardiomyocyte Proliferation.
Int J Biol Sci. 2024 Feb 11;20(5):1602-1616. doi: 10.7150/ijbs.85526. eCollection 2024.
5
The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases.
J Pers Med. 2021 Dec 16;11(12):1373. doi: 10.3390/jpm11121373.
6
Hsp90 interaction networks in fungi-tools and techniques.
FEMS Yeast Res. 2021 Nov 16;21(7). doi: 10.1093/femsyr/foab054.
7
Atypical p38 Signaling, Activation, and Implications for Disease.
Int J Mol Sci. 2021 Apr 17;22(8):4183. doi: 10.3390/ijms22084183.
8
Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.
Reprod Biol Endocrinol. 2021 Mar 4;19(1):39. doi: 10.1186/s12958-021-00723-2.
9
Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions.
Cell Stress Chaperones. 2021 Jan;26(1):3-13. doi: 10.1007/s12192-020-01167-0. Epub 2020 Oct 10.

本文引用的文献

1
Recent advances in Hsp90 inhibitors as antitumor agents.
Anticancer Agents Med Chem. 2008 Oct;8(7):761-82. doi: 10.2174/187152008785914824.
2
Drug discovery approaches targeting the PI3K/Akt pathway in cancer.
Oncogene. 2008 Sep 18;27(41):5511-26. doi: 10.1038/onc.2008.246.
4
The Hsp90 chaperone machinery.
J Biol Chem. 2008 Jul 4;283(27):18473-7. doi: 10.1074/jbc.R800007200. Epub 2008 Apr 28.
5
HSP90: the Rosetta stone for cellular protein dynamics?
Cell Cycle. 2008 Apr 15;7(8):1006-12. doi: 10.4161/cc.7.8.5723. Epub 2008 Feb 11.
6
Differential regulation and properties of MAPKs.
Oncogene. 2007 May 14;26(22):3100-12. doi: 10.1038/sj.onc.1210392.
7
Cdc37 regulation of the kinome: when to hold 'em and when to fold 'em.
Sci STKE. 2007 May 8;2007(385):pe22. doi: 10.1126/stke.3852007pe22.
9
Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury.
Cancer Res. 2007 Feb 15;67(4):1436-41. doi: 10.1158/0008-5472.CAN-06-3721.
10
The cellular world according to Hsp90.
Nat Struct Mol Biol. 2007 Feb;14(2):90-4. doi: 10.1038/nsmb0207-90.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验