Laboratory of Cardiovascular Research, Centre de Recherche Public - Santé, Luxembourg, Luxembourg.
PLoS One. 2010 Mar 11;5(3):e9661. doi: 10.1371/journal.pone.0009661.
A significant proportion of myocardial infarction (MI) patients undergo complex, coordinated perturbations at the molecular level that may eventually drive the occurrence of ventricular dysfunction and heart failure. Despite advances in the elucidation of key processes implicated in this condition, traditional methods relying on gene expression data and the identification of individual biomarkers in isolation pose major limitations not only for improving prediction power, but also for model interpretability. Mechanisms underlying clinical responses after MI remain elusive and there is no biomarker with the capacity to accurately predict ventricular dysfunction after MI. This calls for the exploration of system-level modeling of ventricular dysfunction in post-MI patients. Within this discovery framework key perturbations and predictive patterns are characterized by the integrated biological activity levels observed in pathways, rather than in individual genes.
METHODOLOGY/PRINCIPAL FINDINGS: Here we report an integrative approach to identifying pathways related with ventricular dysfunction post MI with potential prognostic and therapeutic value. We found that a diversity of pathway-level perturbations can be profiled in samples of patients with ventricular dysfunction post MI, most of which represent major reductions of gene expression. Highly perturbed pathways included those implicated in antigen-dependent B-cell activation and the synthesis of leucine. By analyzing patient-specific samples encoded with information derived from highly-perturbed pathways, it is possible to visualize differential prognostic patterns and to perform computational classification of patients with areas under the receiver operating characteristic curve above 0.75. We also demonstrate how the integration of the outcomes generated by different pathway-based analysis models may improve ventricular dysfunction prediction performance.
This research offers an alternative, comprehensive view of key relationships and perturbations that may trigger the emergence or prevention of ventricular dysfunction post-MI.
相当一部分心肌梗死(MI)患者经历了分子水平的复杂、协调的干扰,这些干扰最终可能导致心室功能障碍和心力衰竭的发生。尽管在阐明与该疾病相关的关键过程方面取得了进展,但传统的方法依赖于基因表达数据和单独识别单个生物标志物,不仅对提高预测能力,而且对模型可解释性都存在重大限制。MI 后临床反应的机制仍不清楚,也没有能够准确预测 MI 后心室功能障碍的生物标志物。这就需要探索 MI 后患者心室功能障碍的系统水平建模。在这个发现框架内,关键的扰动和预测模式的特征是观察到的途径中的综合生物活性水平,而不是单个基因。
方法/主要发现:在这里,我们报告了一种综合方法,用于识别与 MI 后心室功能障碍相关的途径,这些途径具有潜在的预后和治疗价值。我们发现,MI 后心室功能障碍患者的样本中可以分析多种途径水平的扰动,其中大多数代表基因表达的主要降低。高度扰动的途径包括抗原依赖性 B 细胞激活和亮氨酸合成所涉及的途径。通过分析用源自高度扰动途径的信息编码的患者特定样本,可以可视化差异预后模式,并通过计算分类,使接收者操作特征曲线下的面积大于 0.75。我们还展示了如何整合不同基于途径的分析模型产生的结果可以提高心室功能障碍预测性能。
这项研究提供了一种替代的、全面的观点,即关键的关系和扰动可能触发 MI 后心室功能障碍的出现或预防。