Laboratory of Cardiovascular Research, Centre de Recherche Public, Santé, Luxembourg.
J Biomed Inform. 2010 Oct;43(5):812-9. doi: 10.1016/j.jbi.2010.05.012. Epub 2010 May 23.
There is currently no method powerful enough to identify patients at risk of developing ventricular dysfunction after myocardial infarction (MI). We aimed to identify major mechanisms related to ventricular dysfunction to predict outcome after MI. Based on the combination of domain knowledge, protein-protein interaction networks and gene expression data, a set of potential biomarkers of ventricular dysfunction after MI was identified. Here we propose a new strategy for the prediction of ventricular dysfunction after MI based on "network activity indices" (NAI), which encode gene network-based signatures and distinguishes between prognostic classes. These models outperformed prognostic models based on standard differential expression analysis. NAI-based models reported high classification accuracy, with a maximum area under the receiver operating characteristic curve (AUC) of 0.75. Furthermore, the classification capacity of these models was validated by performing evaluations on an independent patient cohort (maximum AUC=0.75). These results suggest that transcriptional network-based biosignatures can offer both powerful and biologically-meaningful prediction models of ventricular dysfunction after MI. This research reports a new integrative strategy for identifying transcriptional responses that characterize cardiac repair and for predicting clinical outcome after MI. It can be adapted to other clinical domains, such as those constrained by small molecular datasets and limited translational knowledge. Furthermore, it may reflect clinically-meaningful synergistic effects that cannot be identified by standard analyses.
目前尚无足够强大的方法来识别心肌梗死后发生心室功能障碍的患者。我们旨在确定与心室功能障碍相关的主要机制,以预测心肌梗死后的结局。基于领域知识、蛋白质-蛋白质相互作用网络和基因表达数据的组合,确定了一组心肌梗死后心室功能障碍的潜在生物标志物。在这里,我们提出了一种基于“网络活动指数”(NAI)的心肌梗死后心室功能障碍预测的新策略,该策略基于基因网络特征的编码,并区分预后类别。这些模型在预测性能上优于基于标准差异表达分析的模型。NAI 模型报告了较高的分类准确性,最大受试者工作特征曲线(AUC)为 0.75。此外,通过对独立患者队列进行评估,验证了这些模型的分类能力(最大 AUC=0.75)。这些结果表明,基于转录组网络的生物标志物可以提供强大且具有生物学意义的心肌梗死后心室功能障碍预测模型。该研究报告了一种新的综合策略,用于识别表征心脏修复的转录反应,并预测心肌梗死后的临床结局。它可以适用于其他临床领域,例如受小分子数据集和有限转化知识限制的领域。此外,它可能反映了标准分析无法识别的临床有意义的协同效应。