Institute of Basic Medical Sciences, University of Oslo, POB 1104 Blindern, N-0317 Oslo, Norway.
Neuroscience. 2010 Jun 2;167(4):1004-13. doi: 10.1016/j.neuroscience.2010.03.021. Epub 2010 Mar 16.
Strict control over the initiation of action potentials is the primary task of a neuron. One way to lose proper spike control is to create several spikes, a burst, when only one should be initiated. We describe a new site for burst initiation in rat hippocampal CA3 neurons: the Schaffer collateral axons. These axons lack myelin, are long, extremely thin, and form synapses along their entire paths, features typical for many, if not most cortical axons in the mammalian brain. We used hippocampal slices and recorded from individual Schaffer collateral axons. We found that single action potentials were converted into bursts of two to six action potentials after blocking 4-aminopyridine (4-AP) sensitive K(+) channels. The CA3 somata and initial part of their axons were surgically removed in these experiments, leading to the conclusion that the bursts were initiated far out in the axons. This conclusion was supported by two additional kinds of experiments. First, local application of 4-AP to one out of two stimulated axonal branches of the same neuron showed bursting only at the 4-AP exposed branch. Second, intracellular recordings from CA3 somata showed that some spontaneously occurring bursts were resistant to somatic hyperpolarization. We then investigated a hyperexcitable period that follows individual spikes in the Schaffer collaterals. With extracellular excitability testing, we showed that the time course of this hyperexcitability was compatible with that of the bursts, so this hyperexcitability could be the underlying cause of the bursts. Furthermore, the hyperexcitability was enhanced by low doses of 4-AP (20 microM), alpha-dendrotoxin (alpha-DTX) or margatoxin (MgTX). Kv1.2 containing channels may therefore dampen the hyperexcitability, but because bursting was observed only at high 4-AP concentration (1 mM), other channels may be needed to prevent axonal bursting.
动作电位的起始严格受到控制是神经元的主要任务。一种失去适当尖峰控制的方式是产生多个尖峰,即爆发,而原本只需产生一个尖峰。我们在大鼠海马 CA3 神经元中发现了一个新的爆发起始部位:Schaffer 侧枝轴突。这些轴突没有髓鞘,很长、极细,并在其整个路径上形成突触,这些特征是哺乳动物大脑中许多甚至大多数皮质轴突的典型特征。我们使用海马切片并从单个 Schaffer 侧枝轴突进行记录。我们发现,在阻断 4-氨基吡啶(4-AP)敏感的 K(+) 通道后,单个动作电位会转化为两个到六个动作电位的爆发。在这些实验中,CA3 胞体及其轴突的初始部分被手术切除,得出的结论是爆发是在轴突的远侧起始的。这个结论得到了另外两种实验的支持。首先,将 4-AP 局部应用于同一神经元的两个刺激轴突分支中的一个分支,结果仅在暴露于 4-AP 的分支中出现爆发。其次,从 CA3 胞体进行的细胞内记录显示,一些自发发生的爆发对胞体超极化有抗性。然后,我们研究了 Schaffer 侧枝中单个尖峰之后的超兴奋性时期。通过细胞外兴奋性测试,我们表明这种超兴奋性的时间进程与爆发的时间进程相匹配,因此这种超兴奋性可能是爆发的基础。此外,低剂量的 4-AP(20 μM)、α-树突毒素(α-DTX)或马戈毒素(MgTX)增强了这种超兴奋性。因此,含有 Kv1.2 的通道可能会抑制这种超兴奋性,但由于只有在高浓度的 4-AP(1 mM)下才观察到爆发,可能需要其他通道来防止轴突爆发。