Suppr超能文献

多区域相互作用在视动计算中的作用。

The role of multi-area interactions for the computation of apparent motion.

机构信息

Department of Technology, Institució Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.

出版信息

Neuroimage. 2010 Jul 1;51(3):1018-26. doi: 10.1016/j.neuroimage.2010.03.032. Epub 2010 Mar 18.

Abstract

Apparent motion (AM) is a robust visual illusion, in which fast displays of static objects in successively different positions elicit the perception of object motion. Neurons in higher order areas 21 and 19 compute object motion under such conditions and send feedback to early visual areas 18 and 17, which is instrumental in eliciting computation of motion in those very areas. To explore the computational dynamics of AM, we made a neural field model consisting of two one-dimensional rings of simple neurons expressing firing rates, one for areas 17/18 and one for areas 19/21. The model neurons, without any orientation or direction selectivity, computed apparent motion for the range of space-timings of stimuli associated with short- and long-range AM in humans. The computation of long-range AM in 17/18 required two model areas and the presence of feedback and conduction/computation delays between those areas. As in the in vivo experiments of long-range AM, the stationary stimuli were initially mapped as stationary in model area 17/18, but after the feedback also these lower areas computed AM. The dynamics of the two-area network produces short-range and long-range apparent motion for a large range of feedback strengths and a small range of lateral excitation near the bifurcation to an amplitude instability. The computation of AM in higher order areas was due to the neurons in these areas having large receptive fields as a consequence of divergent feed-forward connectivity. This implies that these areas compute long-range AM when early areas 17 and 18 do not, and therefore higher order areas must enslave lower order areas to compute the same, if the whole network is to arrive at a coherent perceptual solution.

摘要

视动(AM)是一种强大的视觉错觉,在这种错觉中,快速显示连续不同位置的静态物体,会引发对物体运动的感知。在这种情况下,高级区域 21 和 19 中的神经元计算物体运动,并将反馈发送到早期视觉区域 18 和 17,这对于在这些区域中引发运动的计算是至关重要的。为了探索 AM 的计算动态,我们制作了一个由两个一维简单神经元环组成的神经场模型,一个用于区域 17/18,另一个用于区域 19/21。该模型神经元没有任何方向或方向选择性,可计算与人类短程和长程 AM 相关的刺激的时空范围的视动。在 17/18 中计算长程 AM 需要两个模型区域,并且需要在这些区域之间存在反馈和传导/计算延迟。与长程 AM 的体内实验一样,在模型区域 17/18 中,初始时将静止刺激映射为静止,但在反馈之后,这些较低的区域也会计算 AM。两个区域网络的动力学产生了大范围的反馈强度和小范围的横向激励的短程和长程视动,接近幅度不稳定性的分岔。由于前馈连接的发散性,高级区域中的神经元具有较大的感受野,因此这些区域可以计算长程 AM,即使早期区域 17 和 18 不计算 AM,高级区域也必须控制低级区域来计算相同的 AM,以便整个网络能够得出一致的感知解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验