Suppr超能文献

拓扑诱导的焦点黏附控制选择神经元极性。

Neuronal polarity selection by topography-induced focal adhesion control.

机构信息

NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.

出版信息

Biomaterials. 2010 Jun;31(17):4682-94. doi: 10.1016/j.biomaterials.2010.02.032. Epub 2010 Mar 21.

Abstract

Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state.

摘要

神经元与细胞外环境的相互作用指导神经系统发育过程中细胞极性的建立。发育中的神经元以依赖接触的方式读取局部基质的物理特性,并获取必要的导向线索。在之前的工作中,我们证明了 PC12 细胞与纳米光栅(亚微米大小的脊和槽交替的线)的相互作用促进了双极分化和与基质形貌的对齐。在这里,我们研究了粘着斑、细胞收缩和肌动蛋白动力学在这个过程中的作用。利用纳米压印光刻技术和环烯烃共聚物,我们设计了用于高分辨率活细胞显微镜的生物相容性纳米结构化基底。我们的结果表明,神经元极化和接触导向是基于粘着斑的几何约束,导致其成熟和持续的角度调制。我们报告了 ROCK1/2-肌球蛋白 II 通路的活性,并证明 ROCK 介导的收缩有助于神经元分化过程中的极性选择。重要的是,选择过程限制了由肌动蛋白支持的膜突和新神经突在两极的产生。已建立的极性的维持不依赖于 NGF 刺激。总的来说,我们的结果表明,粘着斑和细胞收缩将细胞外环境的形貌结构稳定地与相应的神经元极性状态联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验