Suppr超能文献

元广义梯度近似(Meta-GGA)预测反应能量的积分网格误差:M06系列泛函的网格误差来源。

Integration Grid Errors for Meta-GGA-Predicted Reaction Energies: Origin of Grid Errors for the M06 Suite of Functionals.

作者信息

Wheeler Steven E, Houk K N

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.

出版信息

J Chem Theory Comput. 2010 Feb 9;6(2):395-404. doi: 10.1021/ct900639j.

Abstract

We have assessed integration grid errors arising from the use of popular DFT quadrature schemes for a set of 34 organic reaction energies. The focus is primarily on M05-2X and the M06 suite of functionals (M06-L, M06, M06-2X, and M06-HF). M05-2X, M06, and M06-2X outperform popular older DFT functionals for the reaction energies studied, and offer accuracies comparable to results from perturbative hybrid DFT functionals. However, these new functionals are more sensitive to the choice of quadrature grid than previous generations of DFT functionals. Errors in predicted reaction energies arising from the use of the popular SG-1 grid, which is the default in the Q-Chem package, are significant. In particular, M06-HF reaction energies computed with the SG-1 grid exhibit errors ranging from -6.7 to 3.2 kcal mol(-1) relative to results computed with a very fine integration grid. This grid-sensitivity is not a problem for meta-GGA functionals in general, but is instead due to the specific functional forms used in these functionals. The large grid errors are traced to the kinetic energy density enhancement factor utilized in the exchange component of the M05-2X and M06 functionals. This term contains empirically adjusted parameters that are of large magnitude for all of the M06 functionals and for M06-HF in particular. The product of these large constants with modest integration errors for the kinetic energy density results in very large errors in individual contributions to the exchange energy. This gives rise to the troubling large errors exhibited by these functionals for certain integration grids.

摘要

我们评估了使用流行的密度泛函理论(DFT)积分方案计算34个有机反应能量时产生的积分网格误差。重点主要放在M05 - 2X以及M06系列泛函(M06 - L、M06、M06 - 2X和M06 - HF)上。对于所研究的反应能量,M05 - 2X、M06和M06 - 2X的表现优于流行的旧DFT泛函,并且提供了与微扰混合DFT泛函结果相当的精度。然而,这些新泛函比前几代DFT泛函对积分网格的选择更敏感。使用Q - Chem软件包中的默认流行SG - 1网格所产生的预测反应能量误差很大。特别是,用SG - 1网格计算的M06 - HF反应能量相对于用非常精细的积分网格计算的结果,误差范围在 - 6.7至3.2千卡/摩尔(-1)之间。一般来说,这种网格敏感性对于meta - GGA泛函不是问题,而是由于这些泛函中使用的特定函数形式。大的网格误差可追溯到M05 - 2X和M06泛函交换分量中使用的动能密度增强因子。该术语包含经验调整的参数,对于所有M06泛函,特别是M06 - HF,这些参数值都很大。这些大常数与动能密度适度的积分误差的乘积导致交换能的各个贡献中出现非常大的误差。这就导致了这些泛函在某些积分网格下出现令人不安的大误差。

相似文献

2
Density functionals with broad applicability in chemistry.
Acc Chem Res. 2008 Feb;41(2):157-67. doi: 10.1021/ar700111a. Epub 2008 Jan 11.
3
Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods.
J Chem Theory Comput. 2012 Aug 14;8(8):2824-34. doi: 10.1021/ct300457c. Epub 2012 Jul 24.
5
Thermochemical evaluation of adaptive and fixed density functional theory quadrature schemes.
J Chem Phys. 2022 Dec 21;157(23):234106. doi: 10.1063/5.0119622.
8
Metal-phosphine bond strengths of the transition metals: a challenge for DFT.
J Phys Chem A. 2009 Oct 29;113(43):11833-44. doi: 10.1021/jp902940c.
9
A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.
Phys Chem Chem Phys. 2011 Apr 14;13(14):6670-88. doi: 10.1039/c0cp02984j. Epub 2011 Mar 7.
10
On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies.
J Chem Theory Comput. 2010 Jul 13;6(7):2071-85. doi: 10.1021/ct100119e. Epub 2010 May 26.

引用本文的文献

4
Simulation of the VUV Absorption Spectra of Oxygenates and Hydrocarbons: A Joint Theoretical-Experimental Study.
J Phys Chem A. 2023 May 4;127(17):3743-3756. doi: 10.1021/acs.jpca.2c07743. Epub 2023 Apr 25.
6
Electrocatalytic Behavior of Tetrathiafulvalene (TTF) and Extended Tetrathiafulvalene (exTTF) [FeFe] Hydrogenase Mimics.
ACS Org Inorg Au. 2021 Sep 13;2(1):23-33. doi: 10.1021/acsorginorgau.1c00011. eCollection 2022 Feb 2.
7
CRYSTAL23: A Program for Computational Solid State Physics and Chemistry.
J Chem Theory Comput. 2023 Oct 24;19(20):6891-6932. doi: 10.1021/acs.jctc.2c00958. Epub 2022 Dec 11.
9
Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems.
Chem Rev. 2021 Aug 25;121(16):9816-9872. doi: 10.1021/acs.chemrev.1c00107. Epub 2021 Jul 7.
10
Density Functional Theory Study on the Mechanism of Iridium-Catalyzed Benzylamine C-H Alkenylation with Ethyl Acrylate.
ACS Omega. 2020 Jun 15;5(25):15446-15453. doi: 10.1021/acsomega.0c01587. eCollection 2020 Jun 30.

本文引用的文献

3
Evaluation of Density Functionals and Basis Sets for Carbohydrates.
J Chem Theory Comput. 2009 Apr 14;5(4):679-92. doi: 10.1021/ct8004479. Epub 2009 Mar 4.
7
Density functionals with broad applicability in chemistry.
Acc Chem Res. 2008 Feb;41(2):157-67. doi: 10.1021/ar700111a. Epub 2008 Jan 11.
9
Efficient density-functional theory integrations by locally augmented radial grids.
J Chem Phys. 2007 Oct 28;127(16):164113. doi: 10.1063/1.2794038.
10
How to compute isomerization energies of organic molecules with quantum chemical methods.
J Org Chem. 2007 Mar 16;72(6):2118-26. doi: 10.1021/jo062446p. Epub 2007 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验