Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.
Phys Chem Chem Phys. 2011 Apr 14;13(14):6670-88. doi: 10.1039/c0cp02984j. Epub 2011 Mar 7.
A thorough energy benchmark study of various density functionals (DFs) is carried out with the new GMTKN30 database for general main group thermochemistry, kinetics and noncovalent interactions [Goerigk and Grimme, J. Chem. Theor. Comput., 2010, 6, 107; Goerigk and Grimme, J. Chem. Theor. Comput., 2011, 7, 291]. In total, 47 DFs are investigated: two LDAs, 14 GGAs, three meta-GGAs, 23 hybrids and five double-hybrids. Besides the double-hybrids, also other modern approaches, i.e., the M05 and M06 classes of functionals and range-separated hybrids, are tested. For almost all functionals, the new DFT-D3 correction is applied in order to consistently test the performance also for important noncovalent interactions; the parameters are taken from previous works or determined for the present study. Basis set and quadrature grid issues are also considered. The general aim of the study is to work out which functionals are generally well applicable and robust to describe the energies of molecules. In summary, we recommend on the GGA level the B97-D3 and revPBE-D3 functionals. The best meta-GGA is oTPSS-D3 although meta-GGAs represent in general no clear improvement compared to numerically simpler GGAs. Notably, the widely used B3LYP functional performs worse than the average of all tested hybrids and is also very sensitive to the application of dispersion corrections. We discourage its usage as a standard method without closer inspection of the results, as it still seems to be often done nowadays. Surprisingly, long-range corrected exchange functionals do in general not perform better than the corresponding standard hybrids. However, the ωB97X-D functional seems to be a promising method. The most robust hybrid is Zhao and Truhlar's PW6B95 functional in combination with DFT-D3. If higher accuracy is required, double-hybrids should be applied. The corresponding DSD-BLYP-D3 and PWPB95-D3 variants are the most accurate and robust functionals of the entire study. Additional calculations with MP2 and and its spin-scaled variants SCS-MP2, S2-MP2 and SOS-MP2 revealed that double-hybrids in general outperform those. Only SCS-MP2 can be recommended, particularly for reaction energies. We suggest its usage when a large self-interaction error is expected that prohibits usage of double-hybrids. Perdews' metaphoric picture of Jacob's Ladder for the classification of density functionals' performance could unbiasedly be confirmed with GMTKN30. We also show that there is no statistical correlation between a functional's accuracy for atomization energies and the performance for chemically more relevant reaction energies.
对各种密度泛函(DFs)进行了全面的能量基准研究,使用了新的 GMTKN30 数据库,用于一般主族热化学、动力学和非共价相互作用[Goerigk 和 Grimme,J. Chem. Theor. Comput.,2010,6,107;Goerigk 和 Grimme,J. Chem. Theor. Comput.,2011,7,291]。总共研究了 47 种 DFs:两种 LDA、14 种 GGA、三种 mGGA、23 种杂化和五种双杂化。除了双杂化,还测试了其他现代方法,即 M05 和 M06 类函数和范围分离杂化。对于几乎所有的功能,都应用了新的 DFT-D3 校正,以一致地测试重要非共价相互作用的性能;参数取自先前的工作或为本研究确定。还考虑了基组和积分网格问题。研究的总体目标是确定哪些功能通常适用且稳健,可以描述分子的能量。总的来说,我们推荐在 GGA 水平上使用 B97-D3 和 revPBE-D3 函数。最好的 mGGA 是 oTPSS-D3,尽管 mGGA 通常与数值上更简单的 GGA 相比没有明显的改进。值得注意的是,广泛使用的 B3LYP 功能不如所有测试的杂化的平均水平,并且对色散校正的应用也非常敏感。我们不鼓励在没有仔细检查结果的情况下将其用作标准方法,因为现在似乎仍然经常这样做。令人惊讶的是,长程校正交换函数通常不比相应的标准杂化更好。然而,ωB97X-D 函数似乎是一种很有前途的方法。最稳健的杂化是 Zhao 和 Truhlar 的 PW6B95 功能与 DFT-D3 的组合。如果需要更高的精度,则应应用双杂化。整个研究中最准确和稳健的功能是相应的 DSD-BLYP-D3 和 PWPB95-D3 变体。使用 MP2 及其自旋缩放变体 SCS-MP2、S2-MP2 和 SOS-MP2 进行的额外计算表明,双杂化通常优于那些。仅 SCS-MP2 可以推荐,特别是对于反应能。当预计会出现大的自相互作用误差,从而禁止使用双杂化时,建议使用它。对于密度泛函性能的分类,Perdew 的雅各布天梯的隐喻图像可以通过 GMTKN30 进行公正地确认。我们还表明,功能的准确性对于原子化能与化学上更相关的反应能的性能之间没有统计相关性。