University of Maryland Center for Advanced Study of Language (CASL) and Department of Linguistics, the Ohio State University.
J Child Lang. 2010 Jun;37(3):513-43. doi: 10.1017/S0305000910000085. Epub 2010 Mar 22.
Most computational models of word segmentation are trained and tested on transcripts of speech, rather than the speech itself, and assume that speech is converted into a sequence of symbols prior to word segmentation. We present a way of representing speech corpora that avoids this assumption, and preserves acoustic variation present in speech. We use this new representation to re-evaluate a key computational model of word segmentation. One finding is that high levels of phonetic variability degrade the model's performance. While robustness to phonetic variability may be intrinsically valuable, this finding needs to be complemented by parallel studies of the actual abilities of children to segment phonetically variable speech.
大多数分词的计算模型都是基于语音的转写而不是语音本身进行训练和测试的,并且假定语音在分词之前被转换为符号序列。我们提出了一种表示语音语料库的方法,可以避免这种假设,并保留语音中存在的声学变化。我们使用这种新的表示方法重新评估了分词的一个关键计算模型。一项发现是,较高的语音可变性会降低模型的性能。虽然对语音可变性的鲁棒性可能具有内在价值,但这一发现需要通过对儿童实际分割语音变化的能力进行平行研究来补充。