Suppr超能文献

从自然语音中切分单词:音段线索的次分段变化。

Segmenting words from natural speech: subsegmental variation in segmental cues.

机构信息

University of Maryland Center for Advanced Study of Language (CASL) and Department of Linguistics, the Ohio State University.

出版信息

J Child Lang. 2010 Jun;37(3):513-43. doi: 10.1017/S0305000910000085. Epub 2010 Mar 22.

Abstract

Most computational models of word segmentation are trained and tested on transcripts of speech, rather than the speech itself, and assume that speech is converted into a sequence of symbols prior to word segmentation. We present a way of representing speech corpora that avoids this assumption, and preserves acoustic variation present in speech. We use this new representation to re-evaluate a key computational model of word segmentation. One finding is that high levels of phonetic variability degrade the model's performance. While robustness to phonetic variability may be intrinsically valuable, this finding needs to be complemented by parallel studies of the actual abilities of children to segment phonetically variable speech.

摘要

大多数分词的计算模型都是基于语音的转写而不是语音本身进行训练和测试的,并且假定语音在分词之前被转换为符号序列。我们提出了一种表示语音语料库的方法,可以避免这种假设,并保留语音中存在的声学变化。我们使用这种新的表示方法重新评估了分词的一个关键计算模型。一项发现是,较高的语音可变性会降低模型的性能。虽然对语音可变性的鲁棒性可能具有内在价值,但这一发现需要通过对儿童实际分割语音变化的能力进行平行研究来补充。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验