Monte Scott V, Schentag Jerome J, Adelman Martin H, Paladino Joseph A
CPL Associates, LLC, Amherst, New York 14226, USA.
J Diabetes Sci Technol. 2010 Mar 1;4(2):365-81. doi: 10.1177/193229681000400219.
For microvascular outcomes, there is compelling historical and contemporary evidence for intensive blood glucose reduction in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). There is also strong evidence to support macrovascular benefit with intensive blood glucose reduction in T1DM. Similar evidence remains elusive for T2DM. Because cardiovascular outcome trials utilizing conventional algorithms to attain intensive blood glucose reduction have not demonstrated superiority to less aggressive blood glucose reduction (Action to Control Cardiovascular Risk in Diabetes; Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; and Veterans Affairs Diabetes Trial), it should be considered that the means by which the blood glucose is reduced may be as important as the actual blood glucose.
By identifying quantitative differences between antidiabetic agents on carbohydrate exposure (CE), hepatic glucose uptake (HGU), hepatic gluconeogenesis (GNG), insulin resistance (IR), peripheral glucose uptake (PGU), and peripheral insulin exposure (PIE), we created a pharmacokinetic/pharmacodynamic model to characterize the effect of the agents on the glucose supply and insulin demand dynamic. Glucose supply was defined as the cumulative percentage decrease in CE, increase in HGU, decrease in GNG, and decrease in IR, while insulin demand was defined as the cumulative percentage increase in PIE and PGU. With the glucose supply and insulin demand effects of each antidiabetic agent summated, the glucose supply (numerator) was divided by the insulin demand (denominator) to create a value representative of the glucose supply and insulin demand dynamic (SD ratio).
Alpha-glucosidase inhibitors (1.25), metformin (2.20), and thiazolidinediones (TZDs; 1.25-1.32) demonstrate a greater effect on glucose supply (SD ratio >1), while secretagogues (0.69-0.81), basal insulins (0.77-0.79), and bolus insulins (0.62-0.67) demonstrate a greater effect on insulin demand (SD ratio <1).
Alpha-glucosidase inhibitors, metformin, and TZDs demonstrate a greater effect on glucose supply, while secretagogues, basal insulin, and bolus insulin demonstrate a greater effect on insulin demand. Because T2DM cardiovascular outcome trials have not demonstrated macrovascular benefit with more aggressive blood glucose reduction when using conventional algorithms that predominantly focus on insulin demand, it would appear logical to consider a model that incorporates both the extent of blood glucose lowering (hemoglobin A1c) and the means by which the blood glucose was reduced (SD ratio) when considering macrovascular outcomes.
对于微血管结局,有令人信服的历史和当代证据表明,1型糖尿病(T1DM)或2型糖尿病(T2DM)患者强化降糖有益。也有强有力的证据支持T1DM强化降糖对大血管有益。而T2DM的类似证据仍然难以捉摸。由于采用传统算法实现强化降糖的心血管结局试验并未显示出优于不太积极的降糖治疗(糖尿病心血管风险控制行动;糖尿病和血管疾病行动:培哚普利吲达帕胺缓释片对照评估;以及退伍军人事务部糖尿病试验),因此应考虑到降低血糖的方式可能与实际血糖水平同样重要。
通过确定抗糖尿病药物在碳水化合物暴露(CE)、肝葡萄糖摄取(HGU)、肝糖异生(GNG)、胰岛素抵抗(IR)、外周葡萄糖摄取(PGU)和外周胰岛素暴露(PIE)方面的定量差异,我们创建了一个药代动力学/药效学模型,以表征这些药物对葡萄糖供应和胰岛素需求动态的影响。葡萄糖供应定义为CE的累积百分比下降、HGU的增加、GNG的下降和IR的下降,而胰岛素需求定义为PIE和PGU的累积百分比增加。将每种抗糖尿病药物的葡萄糖供应和胰岛素需求效应相加,用葡萄糖供应(分子)除以胰岛素需求(分母),得出一个代表葡萄糖供应和胰岛素需求动态的值(SD比值)。
α-葡萄糖苷酶抑制剂(1.25)、二甲双胍(2.20)和噻唑烷二酮类药物(TZDs;1.25 - 1.32)对葡萄糖供应的影响更大(SD比值>1),而促分泌剂(0.69 - 0.81)、基础胰岛素(0.77 - 0.79)和餐时胰岛素(0.62 - 0.67)对胰岛素需求的影响更大(SD比值<1)。
α-葡萄糖苷酶抑制剂、二甲双胍和TZDs对葡萄糖供应的影响更大,而促分泌剂、基础胰岛素和餐时胰岛素对胰岛素需求的影响更大。由于T2DM心血管结局试验在使用主要关注胰岛素需求的传统算法进行更积极的降糖治疗时,并未显示出大血管获益,因此在考虑大血管结局时,采用一个既纳入血糖降低程度(糖化血红蛋白)又纳入血糖降低方式(SD比值)的模型似乎是合理的。