Dept. of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.
J Hazard Mater. 2010 Jul 15;179(1-3):127-34. doi: 10.1016/j.jhazmat.2010.02.068. Epub 2010 Mar 1.
The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of antibiotic degradation in aqueous solution by the Fenton process. A three-layer backpropagation neural network was optimized to predict and simulate the degradation of amoxicillin, ampicillin and cloxacillin in aqueous solution in terms of COD removal. The configuration of the backpropagation neural network giving the smallest mean square error (MSE) was three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 14 neurons, linear transfer function (purelin) at output layer and Levenberg-Marquardt backpropagation training algorithm (LMA). ANN predicted results are very close to the experimental results with correlation coefficient (R(2)) of 0.997 and MSE 0.000376. The sensitivity analysis showed that all studied variables (reaction time, H(2)O(2)/COD molar ratio, H(2)O(2)/Fe(2+) molar ratio, pH and antibiotics concentration) have strong effect on antibiotic degradation in terms of COD removal. In addition, H(2)O(2)/Fe(2+) molar ratio is the most influential parameter with relative importance of 25.8%. The results showed that neural network modeling could effectively predict and simulate the behavior of the Fenton process.
该研究考察了人工神经网络(ANN)在芬顿工艺中预测和模拟水溶液中抗生素降解的应用。采用三层反向传播神经网络优化,以 COD 去除率为指标,预测和模拟水溶液中阿莫西林、氨苄西林和氯唑西林的降解。得到最小均方误差(MSE)的反向传播神经网络的配置为具有 14 个神经元的 tanh 传递函数(tansig)的三层 ANN、具有线性传递函数(purelin)的输出层和 Levenberg-Marquardt 反向传播训练算法(LMA)。ANN 的预测结果与实验结果非常接近,相关系数(R(2))为 0.997,MSE 为 0.000376。敏感性分析表明,所有研究的变量(反应时间、H(2)O(2)/COD 摩尔比、H(2)O(2)/Fe(2+)摩尔比、pH 值和抗生素浓度)对 COD 去除率的抗生素降解均有强烈影响。此外,H(2)O(2)/Fe(2+)摩尔比是最具影响力的参数,相对重要性为 25.8%。结果表明,神经网络建模可以有效地预测和模拟芬顿工艺的行为。