Suppr超能文献

从自旋回波磁共振图像自动识别左心室边界。实验与临床可行性研究。

Automated identification of left ventricular borders from spin-echo magnetic resonance images. Experimental and clinical feasibility studies.

作者信息

Fleagle S R, Thedens D R, Ehrhardt J C, Scholz T D, Skorton D J

机构信息

Cardiovascular Center, University of Iowa, Iowa City 52242.

出版信息

Invest Radiol. 1991 Apr;26(4):295-303. doi: 10.1097/00004424-199104000-00002.

Abstract

Gated cardiac magnetic resonance imaging (MRI) permits detailed evaluation of cardiac anatomy, including the calculation of left ventricular volume and mass. Current methods of deriving this information, however, require manual tracing of boundaries in several images; such manual methods are tedious, time consuming, and subjective. The purpose of this study is to apply a new computerized method to automatically identify endocardial and epicardial borders in MRIs. The authors obtained serial, short-axis, spin-echo MRIs of 13 excised animal hearts. Also obtained were selected short-axis, spin-echo ventricular images of 11 normal human volunteers. A method of automated edge detection based on graph-searching principles was applied to the ex vivo and in vivo images. Endocardial and epicardial areas were used to compute left ventricular mass and were compared with the anatomic left ventricular mass for the images of excised hearts. The endocardial and epicardial areas calculated from computer-derived borders were compared with areas from observer tracing. There was very close correspondence between computer-derived and observer tracings for excised hearts (r = 0.97 for endocardium, r = 0.99 for epicardium) and in vivo scans (r = 0.92 for endocardium, r = 0.90 for epicardium). There also was a close correspondence between computer-generated and actual left ventricular mass in the excised hearts (r = 0.99). These data suggest the feasibility of automated edge detection in MRIs. Although further validation is needed, this method may prove useful in clinical MRI.

摘要

门控心脏磁共振成像(MRI)可对心脏解剖结构进行详细评估,包括计算左心室容积和质量。然而,目前获取这些信息的方法需要在多张图像中手动描绘边界;这种手动方法繁琐、耗时且主观。本研究的目的是应用一种新的计算机化方法来自动识别MRI中的心内膜和心外膜边界。作者获取了13个离体动物心脏的系列短轴自旋回波MRI图像。还获取了11名正常人类志愿者的选定短轴自旋回波心室图像。一种基于图形搜索原理的自动边缘检测方法被应用于离体和活体图像。利用心内膜和心外膜面积计算左心室质量,并将其与离体心脏图像的解剖学左心室质量进行比较。将计算机得出的边界计算出的心内膜和心外膜面积与观察者描绘的面积进行比较。对于离体心脏(心内膜r = 0.97,心外膜r = 0.99)和活体扫描(心内膜r = 0.92,心外膜r = 0.90),计算机得出的结果与观察者描绘的结果非常吻合。在离体心脏中,计算机生成的左心室质量与实际左心室质量也密切相关(r = 0.99)。这些数据表明在MRI中进行自动边缘检测是可行的。尽管还需要进一步验证,但这种方法可能在临床MRI中有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验