Suppr超能文献

人耳听到的声音亮点和定位错误。

The acoustical bright spot and mislocalization of tones by human listeners.

机构信息

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

J Acoust Soc Am. 2010 Mar;127(3):1440-9. doi: 10.1121/1.3294654.

Abstract

Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0 degrees (straight ahead) to 90 degrees (extreme right). During this task, the tone levels and phases were measured in the listeners' ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55 degrees . In a source-identification task, listeners' localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener's identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD).

摘要

听众试图从扬声器阵列在自由场中定位 1500Hz 的正弦音,方位角从 0 度(正前方)到 90 度(最右侧)。在这个任务中,听众耳道中的声级和相位被测量。由于存在声亮点,测量的两耳间水平差(ILD)随方位角是非单调函数,最大值接近 55 度。在声源识别任务中,听众的定位决策与非单调的 ILD 密切相关,因此在大方位角时定位不准确。当听众接受训练和反馈时,他们的准确性仅略有提高。在方位辨别任务中,听众判断第一个声音是在第二个声音的左侧还是右侧。辨别结果也反映了非单调 ILD 引起的混淆,并且可以通过听众的识别结果大致预测。当正弦音被调幅或被窄带噪声取代时,两耳间时间差(ITD)线索大大减少了大多数听众的混淆,但并非所有听众都如此。认识到亮点的重要作用需要重新评估定位的低频区域(主要是 ITD)和高频区域(主要是 ILD)之间的过渡。

相似文献

1
The acoustical bright spot and mislocalization of tones by human listeners.
J Acoust Soc Am. 2010 Mar;127(3):1440-9. doi: 10.1121/1.3294654.
2
Acoustic factors affecting interaural level differences for cochlear-implant users.
J Acoust Soc Am. 2020 Apr;147(4):EL357. doi: 10.1121/10.0001088.
5
Sound localization in noise in hearing-impaired listeners.
J Acoust Soc Am. 1999 Jun;105(6):3454-63. doi: 10.1121/1.424672.
6
The acoustical cues to sound location in the guinea pig (Cavia porcellus).
Hear Res. 2014 Oct;316:1-15. doi: 10.1016/j.heares.2014.07.004. Epub 2014 Jul 19.
7
Independent or integrated processing of interaural time and level differences in human auditory cortex?
Hear Res. 2014 Jun;312:121-7. doi: 10.1016/j.heares.2014.03.009. Epub 2014 Apr 5.
9
Spectral contributions to the benefit from spatial separation of speech and noise.
J Speech Lang Hear Res. 2002 Dec;45(6):1297-310. doi: 10.1044/1092-4388(2002/104).

引用本文的文献

2
Objective measure of binaural processing: Acoustic change complex in response to interaural phase differences.
Hear Res. 2024 Jul;448:109020. doi: 10.1016/j.heares.2024.109020. Epub 2024 Apr 28.
6
Age-Related Changes in Interaural-Level-Difference-Based Across-Frequency Binaural Interference.
Front Aging Neurosci. 2022 Jul 27;14:887401. doi: 10.3389/fnagi.2022.887401. eCollection 2022.
8
Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners.
J Assoc Res Otolaryngol. 2022 Feb;23(1):119-136. doi: 10.1007/s10162-021-00821-3. Epub 2021 Nov 23.

本文引用的文献

1
Can measures of sound localization acuity be related to the precision of absolute location estimates?
Hear Res. 2008 Apr;238(1-2):94-109. doi: 10.1016/j.heares.2007.11.006. Epub 2007 Nov 28.
3
Localization of amplitude-modulated high-frequency noise.
J Acoust Soc Am. 2000 Jun;107(6):3568-71. doi: 10.1121/1.429428.
4
Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency.
J Acoust Soc Am. 1999 Sep;106(3 Pt 1):1493-510. doi: 10.1121/1.427147.
5
Individual differences in external-ear transfer functions reduced by scaling in frequency.
J Acoust Soc Am. 1999 Sep;106(3 Pt 1):1480-92. doi: 10.1121/1.427176.
6
Envelope coding in the lateral superior olive. III. Comparison with afferent pathways.
J Neurophysiol. 1998 Jan;79(1):253-69. doi: 10.1152/jn.1998.79.1.253.
7
The effect of head rotations on vertical plane sound localization.
J Acoust Soc Am. 1997 Oct;102(4):2325-32. doi: 10.1121/1.419642.
8
On the externalization of sound images.
J Acoust Soc Am. 1996 Jun;99(6):3678-88. doi: 10.1121/1.414965.
9
Interaural intensity discrimination: insensitivity at 1000 Hz.
J Acoust Soc Am. 1984 Apr;75(4):1191-4. doi: 10.1121/1.390769.
10
Localization of sound in rooms.
J Acoust Soc Am. 1983 Nov;74(5):1380-91. doi: 10.1121/1.390163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验