St.-Petersburg Academic University, Khlopina 8/3, 194021 St.-Petersburg, Russia.
J Chem Phys. 2010 Mar 21;132(11):114508. doi: 10.1063/1.3354119.
This work addresses theory of nucleation and condensation based on the continuous Fokker-Plank type kinetic equation for the distribution of supercritical embryos over sizes beyond the deterministic limit. The second part of the work treats the growth stage and the beginning of the Ostwald ripening. We first study in detail the fluctuation-induced spreading of size spectrum at the growth stage. It is shown that the spectrum should be generally obtained by the convolution of the initial distribution with the Gaussian-like Green function with spreading dispersion. The increase in dispersion depends, however, on the growth index m as well as on the space dimension, and the mode of material influx. In particular, we find that the spreading effect on two-dimensional islands growing at a constant material influx is huge at m=1 but almost absent at m=2. Analytical and numerical solutions for the mean size, the dispersion, and the size spectrum are presented in different cases. Finally, the general condition for the stage of Ostwald ripening in an open system with material influx is discussed.
这项工作基于连续的福克-普朗克型统计动力学方程,解决了过临界核化和凝结理论,用于研究超临态胚胎在超越确定性极限的尺寸范围内的分布。工作的第二部分处理了生长阶段和奥斯特瓦尔德熟化的开始阶段。我们首先详细研究了生长阶段中由于涨落引起的尺寸谱的扩展。结果表明,谱通常应该通过初始分布与具有扩展弥散的高斯型格林函数的卷积来获得。然而,弥散的增加不仅取决于生长指数 m,还取决于空间维度和物质流入的模式。特别是,我们发现,对于以恒定物质流入速率生长的二维岛屿,当 m=1 时扩展效应非常大,但当 m=2 时几乎不存在。在不同的情况下,给出了平均尺寸、弥散和尺寸谱的解析和数值解。最后,讨论了在具有物质流入的开放系统中奥斯特瓦尔德熟化阶段的一般条件。