Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218, USA.
Biochem Biophys Res Commun. 2010 Apr 23;395(1):36-41. doi: 10.1016/j.bbrc.2010.03.117. Epub 2010 Mar 21.
Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man(5)GlcNAc(2)-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man(9)GlcNAc(2)-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc(3)Man(9)GlcNAc(2)-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man(5)GlcNAc(2)-PP-Dol through Glc(1)Man(9)GlcNAc(2)-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc(3)Man(9)GlcNAc(2)-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.
糖基化缺陷的中国仓鼠卵巢 (CHO) 细胞系可用于扩展我们对 N-糖基化途径的理解,并研究先天性糖基化障碍,这些疾病是由 N-聚糖合成缺陷引起的。哺乳动物 N-糖基化途径涉及糖逐步组装到一个磷酸多萜醇 (P-Dol) 载体上,形成一个脂-linked 寡糖 (LLO),然后将完整的寡糖转移到感兴趣的蛋白质上。为了更好地了解该途径中的缺陷如何影响用于 N-糖基化的完整 LLO 供体的可用性,我们使用非放射性、基于 HPLC 的测定法检查 CHO-K1 细胞和三种不同糖基化缺陷 CHO 细胞系中 LLO 合成途径的中间产物。B4-2-1 细胞在磷酸多萜醇-甘露糖合酶 (DPM2) 基因中发生突变,积累了具有结构 Man(5)GlcNAc(2)-P-P-Dol 的 LLO,而缺乏葡萄糖基转移酶 I (ALG6) 活性的 MI8-5 细胞积累了 Man(9)GlcNAc(2)-P-P-Dol。CHO-K1 和 MI5-4 细胞均主要产生完整的 LLO,Glc(3)Man(9)GlcNAc(2)-P-P-Dol,尽管 MI5-4 中的相对数量较低。MI5-4 细胞的己糖激酶活性降低,这可能会影响 LLO 合成所需的许多底物的可用性,从而损害最终 LLO 供体的产生。通过在 MI5-4 中过表达己糖激酶 II 来增加己糖激酶活性会导致从 Man(5)GlcNAc(2)-PP-Dol 到 Glc(1)Man(9)GlcNAc(2)-PP-Dol 的不完全 LLO 中间产物的相对数量减少,并增加最终 LLO 供体 Glc(3)Man(9)GlcNAc(2)-P-P-Dol 的相对数量。这项研究表明,代谢工程可能是提高 LLO 可用性用于 N-糖基化的有用策略。