微管周转率的变化伴随着突触可塑性和记忆形成,这是对小鼠情境性恐惧条件反射的反应。

Changes in microtubule turnover accompany synaptic plasticity and memory formation in response to contextual fear conditioning in mice.

机构信息

KineMed, Inc., 5980 Horton Street, Suite 400, Emeryville, CA 94608, USA.

出版信息

Neuroscience. 2010 Jun 16;168(1):167-78. doi: 10.1016/j.neuroscience.2010.03.031. Epub 2010 Mar 21.

Abstract

Synaptic plasticity plays a crucial role in learning, memory, and cognitive disorders. Cytoskeletal reorganization underlies neuronal synaptic plasticity, but little is known about the regulation of cytoskeletal dynamics in living animals. We used stable isotope labeling to measure the turnover of tubulin in defined microtubule (MT) populations in murine brain. Neuronal MTs generally exhibited low turnover rates in vivo. Basal turnover was highest in tau-associated MTs, intermediate in microtubule-associated protein 2 (MAP2)-associated MTs, and lowest in cold-stable MTs. Labeling of MTs in mature neurons in cell culture yielded similar turnover results. Intracerebroventricular glutamate injection stimulated, via N-methyl-D-aspartic acid receptors, label incorporation (turnover) in cold-stable, tau-associated, and MAP2-associated MTs, the last of which was shown to be dependent on cyclic adenosine-3', 5'-monophosphorothioate-protein kinase A. Contextual fear conditioning, a hippocampus-mediated form of memory formation, was accompanied by increased turnover of hippocampal MAP2-associated and cold-stable MTs. Treatment with the MT-depolymerizing drug nocodazole reversed the conditioning-induced increase in label incorporation in MAP2-associated MTs, reduced dendritic spine density, and impaired memory formation. The effects of nocodazole on MT turnover were prevented by the MT-stabilizing agent Taxol (Sigma-Aldrich, St. Louis, MO, USA) and by brain-derived nerve growth factor, both of which also restored dendritic spine density and memory formation in this model. In conclusion, these results suggest that changes in hippocampal MT turnover are required for, and are a biomarker of, the synaptic plasticity that is involved in memory formation.

摘要

突触可塑性在学习、记忆和认知障碍中起着至关重要的作用。细胞骨架的重组是神经元突触可塑性的基础,但对于活体动物中细胞骨架动力学的调节知之甚少。我们使用稳定同位素标记来测量鼠脑中特定微管(MT)群体中微管蛋白的周转率。体内神经元 MT 的周转率通常较低。在 Tau 相关 MT 中,基础周转率最高,在微管相关蛋白 2(MAP2)相关 MT 中为中等,在冷稳定 MT 中最低。在细胞培养中成熟神经元的 MT 标记也得到了类似的周转率结果。通过 N-甲基-D-天冬氨酸受体,脑室内谷氨酸注射刺激冷稳定、Tau 相关和 MAP2 相关 MT 的标记掺入(周转率),后者被证明依赖于环腺苷酸-3',5'-单磷酸硫代磷酸蛋白激酶 A。情景性恐惧条件作用,一种海马介导的记忆形成形式,伴随着海马体 MAP2 相关和冷稳定 MT 的周转率增加。用微管解聚药物诺考达唑处理会逆转 MAP2 相关 MT 中与条件相关的标记掺入增加,减少树突棘密度,并损害记忆形成。微管稳定剂紫杉醇(Sigma-Aldrich,圣路易斯,密苏里州,美国)和脑源性神经生长因子均可防止诺考达唑对 MT 周转率的影响,这两种药物也可恢复该模型中的树突棘密度和记忆形成。总之,这些结果表明,海马体 MT 周转率的变化是参与记忆形成的突触可塑性所必需的,也是其生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索