Baker D, Steed A, Stair A T
Appl Opt. 1981 May 15;20(10):1734-46. doi: 10.1364/AO.20.001734.
This paper is a review of the historical development of the Michelson interferometer into modern-day Fourier transform spectrometry (FTS) used for upper atmospheric emission studies in the near IR. For the period of the last decade, the focus of the review is upon USAF/USU interferometric instruments. Michelson invented the "cross beam" interferometer in 1880; however, the first interferogram was not reported until that of Wood in 1911. Fellgett deduced the multiplex advantage in 1949. By the early 1950s, both Jacqui-not and Rupert had pointed out the throughput advantage, and Fellgett and Strong had each obtained Fourier transforms of interferograms. In 1959, J. Connes and Gush obtained a spectrum of the nighttime IR airglow in 30 min using a Michelson interferometer. In 1962 Gush and Buijs flew an interferometer aboard a balloon to obtain spectra from the airglow. Mertz and M. Block developed a commercial Michelson interferometer in about 1959. L. Block of AFCRL flew a Michelson interferometer aboard a satellite in 1962. In 1965, Connes and Connes obtained high-resolution spectra of planets using cat's-eye retroreflectors coupled with an interferometrically controlled step and integrate method. NASA successfully flew an interferometer aboard a satellite in 1969, which led to including FTS experiments on the planetary probes. In 1965 Tukey and Cooley published their FFT computer program based upon the algorithm of Good. AFGL/USU applied the FFT algorithm to FTS that same year. Stair launched a rocketborne liquid-He cooled interferometer in 1976 which obtained spectra of earth limb emissions. Mertz in 1959 approached field-of-view widening of an interferometer using variable thickness glass compensator plates. Baker and his USU staff used the Connes-Bouchareine compensation method to develop a series of wide-angle Michelson interferometers (WAMIs) for airglow and auroral studies. In 1973, they created a cryogenic WAMI to obtain an IR airglow spectrum in only 10 sec. A rocketborne version was successfully flown to obtain airglow spectra in 1979. This instrument took a 2-cm(-1) interferogram in 1 sec., used a liquid-He cooled detector to cover the 2-8-microm range, and the NESR was 3 x 10(-13) W cm(-2) sr(-1)/cm(-1) at 5 microm.
本文回顾了迈克尔逊干涉仪发展成为用于近红外高层大气发射研究的现代傅里叶变换光谱仪(FTS)的历史进程。在过去十年期间,回顾的重点是美国空军/犹他州立大学的干涉测量仪器。迈克尔逊在1880年发明了“交叉光束”干涉仪;然而,直到1911年伍德的干涉图才被报道。费尔盖特在1949年推导出了多路复用优势。到20世纪50年代初,雅基诺和鲁珀特都指出了通量优势,费尔盖特和斯特朗各自获得了干涉图的傅里叶变换。1959年,J. 康nes和古什使用迈克尔逊干涉仪在30分钟内获得了夜间红外气辉光谱。1962年,古什和布伊斯将一台干涉仪搭载在气球上以获取气辉光谱。默茨和M. 布洛克在大约1959年研制出了一台商用迈克尔逊干涉仪。空军剑桥研究实验室的L. 布洛克在1962年将一台迈克尔逊干涉仪搭载在卫星上。1965年,康nes父子使用猫眼后向反射镜结合干涉控制的步进积分方法获得了行星的高分辨率光谱。美国国家航空航天局在1969年成功地将一台干涉仪搭载在卫星上,这导致在行星探测器上开展了傅里叶变换光谱实验。1965年,图基和库利基于古德的算法发表了他们的快速傅里叶变换(FFT)计算机程序。同年,空军地球物理实验室/犹他州立大学将FFT算法应用于傅里叶变换光谱仪。1976年,斯泰尔发射了一枚搭载液氦冷却干涉仪的火箭,该干涉仪获得了地球边缘发射光谱。1959年,默茨利用可变厚度玻璃补偿板来拓宽干涉仪的视场。贝克和他在犹他州立大学的团队使用康nes - 布沙雷纳补偿方法研制了一系列用于气辉和极光研究的广角迈克尔逊干涉仪(WAMI)。1973年,他们制造了一台低温WAMI,仅用10秒就获得了红外气辉光谱。1979年,一个火箭搭载版本成功飞行以获取气辉光谱。该仪器在1秒内采集了一张2厘米⁻¹的干涉图,使用液氦冷却探测器覆盖2 - 8微米范围,在5微米处的噪声等效光谱辐射率为3×10⁻¹³瓦·厘米⁻²·球面度⁻¹/厘米⁻¹。