Department of Mathematics and Statistics, The Particulate Fluid Processing Centre, The University of Melbourne, Parkville, Victoria, 3010, Australia.
Faraday Discuss. 2009;143:151-68; discussion 169-86. doi: 10.1039/b901134j.
We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.
我们使用原子力显微镜研究了刚性二氧化硅球(半径约为 45 微米)和二氧化硅纳米粒子超疏水表面(SNP-SHS)在含有和不含有表面活性剂的水溶液电解质中动态力之间的相互作用。SNP-SHS 表面在空气中的特性表明其表面粗糙度高达两微米。当与水相接触时,SNP-SHS 在表面间隙中捕获大、软且稳定的空气口袋。SNP-SHS 的固有粗糙度以及捕获的空气口袋是 SNP-SHS 具有优越疏水性的原因,例如水在这些表面上的静止液滴的高平衡接触角(>140 度)和在力测量中观察到的低流体动力摩擦。我们还观察到,添加的表面活性剂吸附在空气口袋的表面上,放大了涉及 SNP-SHS 的流体动力相互作用。相同的二氧化硅球与横向光滑云母表面之间的动态力表明,使用雷诺润滑模型拟合的纳维滑动长度比球表面粗糙度的尺度大一个数量级。SNP-SHS 的表面粗糙度和横向非均质性使得即使使用纳维滑动边界,也难以使用雷诺润滑模型来表征其动态响应。