Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
J Phys Chem A. 2010 Apr 15;114(14):5026-33. doi: 10.1021/jp100524q.
In 1:1 CH...O hydrogen bonded complexes between haloforms and ethers, a correlation of the spectral shifts of nu(C-H) bands (Deltanu(C-H)) of the donors (haloforms) with C-O-C angular strain of the acceptors (ethers) is investigated by the electronic structure theory method at the MP2/6-311++G** level. The calculation predicts that the three-member cyclic ether (oxirane) that has the smallest C-O-C angle induces a much larger blue shifting effect on nu(C-H) transition of fluoroform compared with that by the open chain analogue, dimethyl ether. The natural bond orbital (NBO) analysis reveals that the effect originates because of higher "s" character in the hybrid lone electron pair orbital of the oxygen atom of the former, which is responsible for a smaller contribution to n(O) --> sigma*(C-H) hyperconjugation interaction energy between the donor-acceptor molecules. The optimized structures of the two complexes are largely different with respect to the intermolecular orientational parameters at the hydrogen bonding sites, and similar behavior is also predicted for the two chloroform complexes. Partial optimizations on a series of structures show that the total binding energy of the complexes are insensitive with respect to those geometric parameters. However, the Deltanu(C-H), hyperconjugation interaction energies and hybridization of the carbon-centric bonding orbital of the C-H bond are sensitive with respect to those parameters. The predicted Deltanu(C-H) of each complex is analyzed with respect to the IR spectral shift measured by van der Veken and coworkers in cryosolutions of inert gases. The disagreement found between the measured and calculated IR shifts is interpreted to be the outcome of deformation of the complex geometries along shallow binding potential energy surfaces owing to solvation in the liquefied inert gases.
在 1:1 CH...O 卤仿和醚的氢键复合物中,通过电子结构理论方法在 MP2/6-311++G** 水平上研究了供体(卤仿)的 ν(C-H) 带的光谱位移(Δν(C-H))与受体(醚)的 C-O-C 角应变之间的相关性。计算预测,具有最小 C-O-C 角的三元环醚(环氧乙烷)比开链类似物二甲醚对氟仿的 ν(C-H)跃迁产生更大的蓝移效应。自然键轨道 (NBO) 分析表明,这种效应源于前者氧原子的杂化孤电子对轨道中更高的“s”特征,这导致供体-受体分子之间的 n(O) --> sigma*(C-H) 超共轭相互作用能的贡献较小。两个复合物的优化结构在氢键部位的分子间取向参数方面有很大的不同,对于两个氯仿复合物也预测了类似的行为。对一系列结构的部分优化表明,复合物的总结合能对这些几何参数不敏感。然而,Δν(C-H)、超共轭相互作用能和 C-H 键的碳中心键轨道的杂化对这些参数敏感。预测的每个复合物的 Δν(C-H)都与 van der Veken 和同事在惰性气体的冷冻溶液中测量的 IR 光谱位移进行了分析。发现测量和计算的 IR 位移之间的差异可以解释为由于在液化惰性气体中的溶剂化作用,复合物几何形状沿着浅结合势能表面的变形。